Sklearn的train_test_split

本文介绍如何使用train_test_split函数高效地将数据集划分为训练集和测试集。通过具体示例展示如何设置参数来控制划分比例及确保结果的可复现性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文转载自 bonelee 的文字,转载仅供学习使用。
train_test_split函数用于将矩阵随机划分为训练子集和测试子集,并返回划分好的训练集测试集样本和训练集测试集标签。
格式:
X_train,X_test, y_train, y_test =cross_validation.train_test_split(train_data,train_target,test_size=0.3, random_state=0)
参数解释:
train_data:被划分的样本特征集
train_target:被划分的样本标签
test_size:如果是浮点数,在0-1之间,表示样本占比;如果是整数的话就是样本的数量
random_state:是随机数的种子。
随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。比如你每次都填1,其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。
随机数的产生取决于种子,随机数和种子之间的关系遵从以下两个规则:

  • 种子不同,产生不同的随机数
  • 种子相同,即使实例不同也产生相同的随机数

代码示例:

import numpy as np
from sklearn.model_selection import train_test_split
X, y = np.arange(10).reshape((5, 2)), range(5)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
print('=====X=====')
print(X)
print('=====list(y)=====')
print(list(y))
print('=====X_train=====')
print(X_train)
print('=====y_train=====')
print(y_train)
print('=====X_test=====')
print(X_test)
print('=====y_test=====')
print(y_test)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值