【NLP】新闻主题分类任务

本文介绍了如何使用深度学习构建新闻主题分类器,涉及构建带有Embedding层的模型、数据批量处理、训练验证函数的构建以及模型训练和词向量的查看。案例基于NLP和TorchText库,对12万条新闻数据进行分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

学习目标

  • 了解有关新闻主题分类和有关数据.

  • 掌握使用浅层网络构建新闻主题分类器的实现过程.

  • 关于新闻主题分类任务:

    • 以一段新闻报道中的文本描述内容为输入, 使用模型帮助我们判断它最有可能属于哪一种类型的新闻, 这是典型的文本分类问题, 我们这里假定每种类型是互斥的, 即文本描述有且只有一种类型.

新闻主题分类数据:

  • 通过torchtext获取数据:
# 导入相关的torch工具包
import torch
import torchtext
# 导入torchtext.datasets中的文本分类任务
from torchtext.datasets import text_clas
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

chaser&upper

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值