【Leetcode】10. Regular Expression Matching

本文介绍了一种解决正则表达式匹配问题的动态规划算法。通过构建二维DP表格,文章详细阐述了如何处理含有'.'和'*'的模式串,实现字符串的有效匹配。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目地址:

https://leetcode.com/problems/regular-expression-matching/

给定一个字符串 s s s和一个模式串 p p p p p p中含字母,'.'或者'*'。其中'.'可以匹配任何单个字符,'*'可以匹配其之前的字符重复 0 0 0次或大于等于 1 1 1次。问 s s s是否符合 p p p所代表的模式。

思路是动态规划。设 f [ i ] [ j ] f[i][j] f[i][j] s s s的前 i i i个字符是否能匹配模式串 p p p里的前 j j j个字符( i i i j j j都是从 1 1 1开始计数)。我们可以按照 p [ j − 1 ] p[j-1] p[j1]是如何与 s s s匹配的来分类:
1、若 p [ j − 1 ] p[j-1] p[j1]是字母或者是'.',那么 p [ j − 1 ] p[j-1] p[j1]要必然与 s [ i − 1 ] s[i-1] s[i1]进行匹配,并且要求 p [ 0 : j − 2 ] p[0:j-2] p[0:j2] s [ 0 : i − 2 ] s[0:i-2] s[0:i2]要匹配。此时 f [ i ] [ j ] = ( p [ j − 1 ] = . ∨ p [ j − 1 ] = s [ i − 1 ] ) ∧ f [ i − 1 ] [ j − 1 ] f[i][j]=(p[j-1]=.\lor p[j-1]=s[i-1])\land f[i-1][j-1] f[i][j]=(p[j1]=.p[j1]=s[i1])f[i1][j1]2、若 p [ j − 1 ] p[j-1] p[j1]'*',那么这个'*'连同其前一个字符应该看成一个整体:
如果这个整体按照出现 0 0 0次来匹配,那么结果就是 f [ i ] [ j − 2 ] f[i][j-2] f[i][j2](此时需要保证 j ≥ 2 j\ge 2 j2,事实上如果 p p p是个合法的模式串,应该有如果 p [ j − 1 ] p[j-1] p[j1]'*'那么 j ≥ 2 j\ge 2 j2。但如果 p p p不合法,我们也应该返回false。所以这里还是需要额外判断一下 j ≥ 2 j\ge 2 j2,只是为了将不合法的情形包含进去);
如果这个整体按照出现大于等于 1 1 1次来匹配,那么就要求或者 p [ j − 2 ] p[j-2] p[j2]'.',或者 s [ i − 1 ] = p [ j − 2 ] s[i-1]=p[j-2] s[i1]=p[j2],这个整体匹配完之后,还需要 s [ 0 : i − 2 ] s[0:i-2] s[0:i2] p [ 0 : j − 1 ] p[0:j-1] p[0:j1]匹配,也就是还要求 f [ i − 1 ] [ j ] f[i-1][j] f[i1][j]为true。注意,这里是 p [ 0 : j − 1 ] p[0:j-1] p[0:j1],因为那个整体是匹配大于等于 1 1 1次的出现,将 s s s末字符匹配完之后,前面有可能还有 s [ i − 1 ] s[i-1] s[i1]出现,也就是那个整体匹配的一部分是 s [ i − 1 ] s[i-1] s[i1]而不是全部。
综上,此时: f [ i ] [ j ] = f [ i ] [ j − 2 ] ∨ ( ( p [ j − 2 ] = . ∨ p [ j − 2 ] = s [ i − 1 ] ) ∧ f [ i − 1 ] [ j ] ) f[i][j]=f[i][j-2]\lor ((p[j-2]=. \lor p[j-2]=s[i-1])\land f[i-1][j]) f[i][j]=f[i][j2]((p[j2]=.p[j2]=s[i1])f[i1][j])考虑初始条件,空字符串可以和空模式匹配,而非空字符串无法和空模式匹配,所以 f [ 0 ] [ 0 ] f[0][0] f[0][0]是true,而当 i > 0 i>0 i>0时, f [ i ] [ 0 ] f[i][0] f[i][0]是false。但是 f [ 0 ] [ j ] f[0][j] f[0][j]一下子是看不出来的,需要在递推的过程中算出来。代码如下:

class Solution {
 public:
  bool isMatch(string s, string p) {
    int n = s.size(), m = p.size();
    s = " " + s;
    p = " " + p;
    bool f[n + 1][m + 1];
    memset(f, 0, sizeof f);
    f[0][0] = true;
    // 到此,f[.][0]就已经全算出了,接下来只需要求f[.>0][j]
    for (int j = 1; j <= m; j++)
      for (int i = 0; i <= n; i++)
        if (p[j] != '*')
          f[i][j] = i && (p[j] == '.' || s[i] == p[j]) && f[i - 1][j - 1];
        else
          f[i][j] = j >= 2 && f[i][j - 2] ||
                    i && f[i - 1][j] && (p[j - 1] == '.' || s[i] == p[j - 1]);
    return f[n][m];
  }
};

时空复杂度 O ( l s l p ) O(l_sl_p) O(lslp)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值