题目地址:
给定一个长 n n n数组 a a a,每一步允许将其中某个数 a [ i ] a[i] a[i]替换为两个数,且这两个数之和要等于 a [ i ] a[i] a[i](对于新产生的数也可以接着替换)。问最少要做多少次操作可以使得整个数组是非严格递增的。
我们从后向前考虑数组,如果第一次发现 a [ i ] > a [ i + 1 ] a[i]>a[i+1] a[i]>a[i+1]了,我们才需要考虑做操作。如果不然,设某另一个最优方案里操作的最右边的数不是 i i i,但是 a [ i ] a[i] a[i]又必须被操作,所以这个最优方案操作的数就是 a [ j ] , j > i a[j],j>i a[j],j>i,操作会将 a [ j ] a[j] a[j]变成若干更小的数,这个时候原方案肯定比这个最优方案更优(因为它限制少)。接下来考虑要将 a [ i ] a[i] a[i]怎么做拆分。拆分必须满足 a [ i ] = b 1 + b 2 + . . . + b k , b 1 ≤ b 2 ≤ . . . ≤ b k ≤ a [ i + 1 ] a[i]=b_1+b_2+...+b_k,b_1\le b_2\le ...\le b_k\le a[i+1] a[i]=b1+b