题目地址:
给定两个长度 1 ≤ l 1 ≤ l 2 1\le l_1\le l_2 1≤l1≤l2,和两个非负整数 o , z o,z o,z。现在要构造 01 01 01字符串 s s s使得 s s s的 1 1 1子串( 1 1 1子串意思是只含 1 1 1且左右无法继续延伸了的子串)的长度都是 o o o的倍数,且使得 s s s的 0 0 0子串(同上)的长度都是 z z z的倍数。问这样的 s s s且长度处于 [ l 1 , l 2 ] [l_1,l_2] [l1,l2]之间的有多少个。
设 f [ k ] f[k] f[k]表示长度为 k k k的满足条件的串有多少个,对于任何长度为 k k k的满足条件的串可以分为两类,一类以 1 1 1结尾,如果如此,那么去掉结尾的 o o o个 1 1 1,剩余的串肯定也满足条件,个数是 f [ k − o ] f[k-o] f[k−o]个;同理以 0 0 0结尾的满足条件的有 f [ k − z ] f[k-z] f[k−z]个,从而 f [ k ] = f [ k − o ] + f [ k − z ] f[k]=f[k-o]+f[k-z] f[k]=f[k−o]+f[k−z]代码如下:
class Solution {
public:
int goodBinaryStrings(int minL, int maxL, int one, int zero) {
constexpr int MOD = 1e9 + 7;
vector<int> f(maxL + 1, 0);
f[0] = 1;
int res = 0;
for (int i = 1; i <= maxL; i++) {
if (i >= one) f[i] = (f[i] + f[i - one]) % MOD;
if (i >= zero) f[i] = (f[i] + f[i - zero]) % MOD;
if (i >= minL) res = (res + f[i]) % MOD;
}
return res;
}
};
时空复杂度 O ( l 2 ) O(l_2) O(l2)。