题目地址:
给定一个长 n n n正整数数组 a a a,再给定一个正整数 t t t,问是否存在一个 a a a的非空长 k k k的子数组使得该子数组每个数都大于 t / k t/k t/k。如果存在,返回任意一个满足条件的子数组的长度;如果不存在,返回 − 1 -1 −1。
如果 a [ l : r ] a[l:r] a[l:r]满足条件,设 arg min a [ l : r ] = k \arg\min a[l:r]=k argmina[l:r]=k,我们考虑最左边 l ′ ≤ k l'\le k l′≤k使得 a [ l ′ ] ≥ a [ k ] a[l']\ge a[k] a[l′]≥a[k]和最右边的 r ′ ≥ k r'\ge k r′≥k使得 a [ r ′ ] ≥ a [ k ] a[r']\ge a[k] a[r′]≥a[k],那么 a [ l ′ : r ′ ] a[l':r'] a[l′:r′]一定也满足条件。所以我们只需要枚举形如 a [ l ′ : r ′ ] a[l':r'] a[l′:r′]的区间就行了,可以使用单调栈。代码如下:
class Solution {
public:
int validSubarraySize(vector<int>& a, int t) {
stack<int> stk;
int n = a.size();
for (int i = 0; i < n; i++) {
while (stk.size() && a[stk.top()] >= a[i]) {
int idx = stk.top();
stk.pop();
int l = stk.size() ? stk.top() : -1;
int len = i - l - 1;
if (a[idx] > (double)t / len) return len;
}
stk.push(i);
}
while (stk.size()) {
int idx = stk.top();
stk.pop();
int l = stk.size() ? stk.top() : -1;
int len = n - l - 1;
if (a[idx] > (double)t / len) return len;
}
return -1;
}
};
时空复杂度 O ( n ) O(n) O(n)。