caffe blob入门理解

Blob是Caffe框架中的基本数据单元,用于存储网络层的输入输出和梯度。它包含data_和diff_,分别存储数据和梯度,以及形状信息如num、channels、height和width。Blob支持Reshape函数来动态调整内存分配,确保能适应不同尺寸的数据。此外,Blob还提供了数据访问和共享的接口。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Blob是caffe里面的数据结构,是基本的数据存储单元,其主要存储的数据是网络中的中间数据变量,比如各层的输入输出、代价函数对于各层参数的梯度。

Blob中除了存储数据外,还有一些标记数据的参数,如下:

protected:  
  shared_ptr<SyncedMemory> data_;  	//网络各层的输入输出
  shared_ptr<SyncedMemory> diff_;  	//代价函数对于各层参数的梯度
  shared_ptr<SyncedMemory> shape_data_; 
  vector<int> shape_;  //是一个可变数组,主要存储4个变量==>num:一个batch中的样本数量,blob的存储层是以batch为基本单位的;channels:对应层的通道,比如卷积层有20个卷积核,channels的值就是20;height、width:单个数据的尺寸,可能是一副图像的尺寸,也可能是卷积核的尺寸,在每一层所代表的含义也不相同。
  int count_;  	//这个Blob里已经存储的元素的个数
  int capacity_;	//这个Blob里面的容量

Blob同时保存了data_和diff_,类型都为SyncedMemory的指针

Blob除了数据成员之外,也有很多用于操作数据的函数成员,下面将提到几个比较重要的:

void Blob<Dtype>::Reshape()	//在原来分配的内存不够的情况下重新分配内存
const Dtype* Blob<Dtype>::cpu_data()	//获取Blob结构体中的data_数据的指针,同时限制不能对返回的指针指向的内容进行更改
const Dtype* Blob<Dtype>::cpu_diff()	//获取Blob结构体中的diff_数据的指针,同时限制不能对返回的指针指向的内容进行更改
Dtype* Blob<Dtype>::mutable_cput_data()	//获取Blob结构体中的data_数据的指针,同时可以对指针指向的内容更改
Dtype* Blob<Dtype>::mutable_cpu_diff()	//获取Blob结构体中的diff_数据的指针,同时可以对指针指向的内容更改
void Blob<Dtype>::ShareData(const Blob& ohter)	//让其他Blob的data_数据和当前Blob共享
void Blob<Dtype>::ShareDiff(const Blob& other)	//让其他Blob的diff_数据和当前的Blob共享

在blob.h中还有这样的定义:
在这里插入图片描述
这四个函数和shape()是一样的作用。shape()本身是一个vector数组,size是4,第一个位置存储图片的数量,第二个位置存储通道的数量,第三第四个位置存储图片的尺寸。

逻辑上看,Blob是一个四维数组,但实际上,因为数组的存储是在内存中开辟一块连续的、大小相同的内存空间,所以Blob的存储应该是一个一维的存储结构,只不过时利用四个参数来进行寻址(shape_里的四个参数),并且Blob是行优先的存储方式。
所以对于一个(n, k, h, w)的Blob,其维度是n * k * h * w,在(n, k, h, w)位置的物理位置是((n * K + k) * H + h) * W + w。
以Blob中二维矩阵为例(如全连接网络shape(N, D)),如图所示,同样的存储方式可以推广到多维。
在这里插入图片描述
动态多维数组:Blob类可以动态改变数组的尺寸,当拓展数组导致原有内存空间不足以放下数据时(count > capacity),就会重新分配内存。Blob提供了一组Reshape函数来完成这个功能。

void Reshape(const int num, const int channels, const int height, const int width); // Deprecated
void Reshape(const vector<int>& shape);
void Reshape(const BlobShape& shape);
void ReshapeLike(const Blob& other);

Blob类在初始化时并没有分配内存,也是通过调用Reshape来分配内存的。

template <typename Dtype>
void Blob<Dtype>::Reshape(const vector<int>& shape) {
  CHECK_LE(shape.size(), kMaxBlobAxes); // 检查维数
  count_ = 1; // 用于计算新的多维数组的大小
  shape_.resize(shape.size()); // 更新维数
  if (!shape_data_ || shape_data_->size() < shape.size() * sizeof(int)) {
    // shape_data_ 未初始化或者内存太小
    shape_data_.reset(new SyncedMemory(shape.size() * sizeof(int)));
  }
  int* shape_data = static_cast<int*>(shape_data_->mutable_cpu_data());
  for (int i = 0; i < shape.size(); ++i) {
    CHECK_GE(shape[i], 0);
    CHECK_LE(shape[i], INT_MAX / count_) << "blob size exceeds INT_MAX";
    count_ *= shape[i];
    shape_[i] = shape[i];
    shape_data[i] = shape[i];
  }
  if (count_ > capacity_) {
    // 内存不够
    capacity_ = count_;
    data_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
    diff_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
  }
}

转载:https://www.cnblogs.com/ymjyqsx/p/7799731.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值