llm学习


前言

这是一篇学习第三期书生大模型实战营的记录。


TASK一、使用 OpenCompass 评测 internlm2-chat-1.8b 模型在 ceval 数据集上的性能,记录复现过程并截图。

在这里插入图片描述
在这里插入图片描述
再a100上做的OpenCompass评测,花了大概4个小时,从图中看出internlm2-chat-1.8b模型在ceval-middle_school_biology,ceval-middle_school_chemistry等中学题目上表现良好,在ceval-computer_architecture 计算机架构方面表现欠佳。

### LLM学习路径与资源 对于希望系统化学习LLM(大型语言模型)的人来说,可以从以下几个方面入手: #### 1. **基础知识积累** 掌握必要的理论基础是学习任何技术的第一步。这包括但不限于线性代数、概率论、统计学以及计算机科学的基础知识[^1]。 #### 2. **学习阶段划分** 整个学习过程可以分为多个阶段,逐步深入理解大模型的核心概念和技术实现。具体来说,这些阶段涵盖了从基本原理到实际应用的内容[^2]。 - 初级阶段:熟悉Python编程语言及其常用库如NumPy, Pandas等;了解深度学习框架TensorFlow或者PyTorch。 - 中级阶段:研究神经网络结构特别是Transformer架构的工作机制;探索预训练模型如何工作并尝试微调已有模型完成特定任务。 - 高级阶段:参与基于真实世界场景的大规模项目实践,在此过程中不断优化自己的解决方案能力,并最终能够独立设计新的算法来解决复杂问题。 #### 3. **实战案例分析** 通过观察其他人在不同领域内的成功经验可以帮助加速个人成长速度。例如利用星火大模型、文心一言这样的开源工具创建属于自己的应用程序实例。 #### 4. **多媒体辅助教学材料** 观看高质量的教学视频往往能带来直观的感受从而加深记忆效果。因此推荐寻找那些专注于讲解最新研究成果并且提供详尽代码演示的系列课程作为补充参考资料之一。 #### 5. **阅读专业书籍** 获取纸质版或电子版本关于人工智能、机器学习方面的经典著作也是不可或缺的一部分。它们通常包含了更为全面而深刻的见解供读者参考学习。 ```python import torch from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) print(output) ``` 上述代码展示了如何加载GPT-2模型并对给定文本进行编码处理的一个简单例子[^3]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值