LeetCode62. 不同路径(2024冬季每日一题 33)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:
在这里插入图片描述

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

提示:

1<=m,n<=1001 <= m, n <= 1001<=m,n<=100
题目数据保证答案小于等于 2∗1092 * 10^92109


思路:动态规划

  • 用 f[i, j] 表示从左上角走到 (i, j) 的路径数量
  • 根据题意:每一步都只能向右或者向下走,说明 i, j 位置的路径只取决于 上方 和 左方 位置
  • 就有:f[i, j] = f[i - 1, j] + f[i, j - 1],即状态状态转移方程
class Solution {
public:
    int f[110][110];
    int uniquePaths(int m, int n) {
        for(int i = 0; i < m; i++) f[i][0] = 1;
        for(int i = 0; i < n; i++) f[0][i] = 1;
        for(int i = 1; i < m; i++){
            for(int j = 1; j < n; j++){
                f[i][j] = f[i-1][j] + f[i][j-1];
            }
        }
        return f[m-1][n-1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值