一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1:
输入:m = 3, n = 7
输出:28
示例 2:
输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下
示例 3:
输入:m = 7, n = 3
输出:28
示例 4:
输入:m = 3, n = 3
输出:6
提示:
1<=m,n<=1001 <= m, n <= 1001<=m,n<=100
题目数据保证答案小于等于 2∗1092 * 10^92∗109
思路:动态规划
- 用 f[i, j] 表示从左上角走到 (i, j) 的路径数量
- 根据题意:每一步都只能向右或者向下走,说明 i, j 位置的路径只取决于 上方 和 左方 位置
- 就有:f[i, j] = f[i - 1, j] + f[i, j - 1],即状态状态转移方程
class Solution {
public:
int f[110][110];
int uniquePaths(int m, int n) {
for(int i = 0; i < m; i++) f[i][0] = 1;
for(int i = 0; i < n; i++) f[0][i] = 1;
for(int i = 1; i < m; i++){
for(int j = 1; j < n; j++){
f[i][j] = f[i-1][j] + f[i][j-1];
}
}
return f[m-1][n-1];
}
};