给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例 1:
输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。
示例 2:
输入:grid = [[1,2,3],[4,5,6]]
输出:12
提示:
- m==grid.lengthm == grid.lengthm==grid.length
- n==grid[i].lengthn == grid[i].lengthn==grid[i].length
- 1<=m,n<=2001 <= m, n <= 2001<=m,n<=200
- 0<=grid[i][j]<=2000 <= grid[i][j] <= 2000<=grid[i][j]<=200
思路:动态规划
- 用 f[i, j] 表示从左上角走到 (i, j) 的最小路径和
- 根据题意:每一步都只能向右或者向下走,说明 i, j 位置的路径只取决于 上方 和 左方 位置
- 就有:f[i, j] = min(f[i - 1, j],f[i, j - 1])+grid[i][j],即状态状态转移方程
- 对于第一行和第一列数据,由于 i == 0 或者 j == 0,可以特判下
class Solution {
public:
int f[210][210];
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
for(int i = 0; i < m; i++){
for(int j = 0; j < n; j++){
if(i == 0 || j == 0) {
if(i == 0 && j == 0) f[i][j] = grid[i][j];
else if(i == 0) f[i][j] = f[i][j-1] + grid[i][j];
else f[i][j] = f[i-1][j] + grid[i][j];
}else {
f[i][j] = min(f[i-1][j], f[i][j-1]) + grid[i][j];
}
}
}
return f[m-1][n-1];
}
};