LeetCode64. 最小路径和(2024冬季每日一题 34)

给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例 1:
在这里插入图片描述

输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。

示例 2:

输入:grid = [[1,2,3],[4,5,6]]
输出:12

提示:

  • m==grid.lengthm == grid.lengthm==grid.length
  • n==grid[i].lengthn == grid[i].lengthn==grid[i].length
  • 1<=m,n<=2001 <= m, n <= 2001<=m,n<=200
  • 0<=grid[i][j]<=2000 <= grid[i][j] <= 2000<=grid[i][j]<=200

思路:动态规划

  • 用 f[i, j] 表示从左上角走到 (i, j) 的最小路径和
  • 根据题意:每一步都只能向右或者向下走,说明 i, j 位置的路径只取决于 上方 和 左方 位置
  • 就有:f[i, j] = min(f[i - 1, j],f[i, j - 1])+grid[i][j],即状态状态转移方程
  • 对于第一行和第一列数据,由于 i == 0 或者 j == 0,可以特判下
class Solution {
public:
    int f[210][210];
    int minPathSum(vector<vector<int>>& grid) {
        int m = grid.size(), n = grid[0].size();
        for(int i = 0; i < m; i++){
            for(int j = 0; j < n; j++){
                if(i == 0 || j == 0) {
                    if(i == 0 && j == 0) f[i][j] = grid[i][j];
                    else if(i == 0) f[i][j] = f[i][j-1] + grid[i][j];
                    else f[i][j] = f[i-1][j] + grid[i][j];
                }else {
                    f[i][j] = min(f[i-1][j], f[i][j-1]) + grid[i][j];
                }
            }
        }
        return f[m-1][n-1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值