LeetCode 199. 二叉树的右视图 题解

题目描述

给定一棵二叉树的根节点,想象你站在它的右侧,返回你能看到的节点值(从上到下的顺序)。

示例:

输入:
    1
   / \
  2   3
   \   \
    5   4
输出:[1,3,4]
解释:站在右侧时,只能看到每层最右边的节点

解题思路

这道题的核心是找到每一层最右边的节点。我们可以用递归的 DFS(深度优先搜索)来解决,但需要一点小技巧:

  1. 右子树优先:遍历时先访问右子树,再访问左子树。这样当第一次到达某一深度时,遇到的节点一定是该层最右侧的节点。

  2. 深度标记:维护一个全局变量 max_depth 记录当前已访问过的最大深度。只有当当前深度超过 max_depth 时,才记录节点值并更新最大深度。

举个栗子🌰:

  • 对于示例中的树,遍历顺序是 1 → 3 → 4 → 2 → 5

  • 当访问到节点 3(深度2)时,发现深度超过之前的 max_depth(初始为0),记录 3

  • 接着访问 4(深度3),记录 4

  • 最后访问 5(深度3),此时 max_depth 已经是3了,不再记录


代码实现

class Solution {
public:
    int max_depth = 0;  // 全局变量,记录当前最大深度
    
    void traversal(TreeNode *root, int depth, vector<int> &res) {
        if (!root) return;
        depth++;  // 进入节点时深度+1
        
        // 关键判断:首次到达新深度时记录节点值
        if (depth > max_depth) {
            max_depth = depth;     // 更新最大深度
            res.push_back(root->val); // 记录右侧节点
        }
        
        // 先递归右子树,再递归左子树(右子树优先)
        traversal(root->right, depth, res);
        traversal(root->left, depth, res);
    }
    
    vector<int> rightSideView(TreeNode* root) {
        if (!root) return {};  // 处理空树
        vector<int> res;
        traversal(root, 0, res);  // 初始深度为0
        return res;
    }
};

复杂度分析

  • 时间复杂度:O(n)
    每个节点恰好被访问一次,没有重复操作。

  • 空间复杂度:O(h)
    h 是树的高度,递归调用栈的深度最大为树高。最坏情况下(树退化为链表)空间复杂度为 O(n)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值