机器学习之运用特征脸(eigenface)和sklearn.svm.SVC进行人脸识别

运用特征脸(eigenface)和sklearn.svm.SVC进行人脸识别。

首先需要下载一个经过预处理的数据集,从数据集中找出最有代表性的前5人的预期结果

第一步,import导入实验所用到的包

import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import fetch_lfw_people
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.decomposition import PCA
from sklearn.svm import SVC

第二步,下载人脸数据

lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

但是会因为网络问题未下载完,报错。所以应提前下载

“Labeled Faces in the Wild”
http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz

放在以下文件夹下
在这里插入图片描述

第三步,特征提取


X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.25, random_state=42)


n_components = 150

pca = PCA(n_components=n_components, svd_solver='randomized',
          whiten=True).fit(X_train)

eigenfaces = pca.components_.reshape((n_components, h, w))

X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)

第四步,建立SVM分类模型


param_grid = {
   
   'C': [1e3, 5e3, 1e4, 5e4, 1e5],
              'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }
clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid)
clf = clf.fit(X_train_pca, y_train)
print("Best estimator found by grid search:")
print(clf.
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南蓬幽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值