机器学习之深度学习卷积神经网络,实现基于CNN网络的手写字体识别

实现基于CNN网络的手写字体识别

首先下载数据
在这里插入图片描述

1、搭建CNN网络模型;

class CNN(nn.Module):
    def __init__(self):
        super(CNN,self).__init__()
        '''
        一般来说,卷积网络包括以下内容:
        1.卷积层
        2.神经网络
        3.池化层
        '''
        self.conv1=nn.Sequential(
            nn.Conv2d(              #--> (1,28,28)
                in_channels=1,      #传入的图片是几层的,灰色为1层,RGB为三层
                out_channels=16,    #输出的图片是几层
                kernel_size=5,      #代表扫描的区域点为5*5
                stride=1,           #就是每隔多少步跳一下
                padding=2,          #边框补全,其计算公式=(kernel_size-1)/2=(5-1)/2=2
            ),    # 2d代表二维卷积           --> (16,28,28)
            nn.ReLU(),              #非线性激活层
            nn.MaxPool2d(kernel_size=2),    #设定这里的扫描区域为2*2,且取出该2*2中的最大值          --> (16,14,14)
        )

        self.conv2=nn.Sequential(
            nn.Conv2d(              #       --> (16,14,14)
                in_channels=16,     #这里的输入是上层的输出为16层
                out_channels=32,    #在这里我们需要将其输出为32层
                kernel_size=5,      #代表扫描的区域点为5*5
                stride=1,           #就是每隔多少步跳一下
                padding=2,          #边框补全,其计算公式=(kernel_size-1)/2=(5-1)/2=
            ),                      #   --> (32,14,14)
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2),    #设定这里的扫描区域为2*2,且取出该2*2中的最大值     --> (32,7,7),这里是三维数据
        )

        self.out=nn.Linear(32*7*7,10)       #注意一下这里的数据是二维的数据

    def forward(self,x):
        x=self.conv1(x)
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南蓬幽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值