不相邻最大子序列和

题目描述

给你一个n,和一个长度为n的数组,在不同时选位置相邻的两个数的基础上,求该序列的最大子序列和(挑选出的子序列可以为空)。

输入         3,[1,2,3]       返回值     4      说明:有[],[1],[2],[3],[1,3] 4种选取方式其中[1,3]选取最优,答案为4 

输入        4,[4,2,3,5]     返回值     9      说明:其中[4,5]的选取方案是在满足不同时选取相邻位置的数的情况下是最优的答案

牛客链接:https://www.nowcoder.com/practice/269b4dbd74e540aabd3aa9438208ed8d?tpId=188&tqId=38344&rp=1&ru=%2Factivity%2Foj&qru=%2Fta%2Fjob-code-high-week%2Fquestion-ranking&tab=answerKey

主要思路:

新建整数数组dp,该数组的第i个元素(下标为i-1)表示数组array的前i项的不相邻子序列的最大和;

显然,dp[0] 的值是array[0];dp[1]的值是dp[0]和array[1]的最大值;

所以,如果前n项最大值为a,则第n+1项最大值就是Math.max(a,前n-1项最大值+第n+1项的值)

即dp[n] = Math.max( dp[n-1],dp[n-2]+array[n] );

import java.util.*;

public class Solution {
    public long subsequence (int n, int[] array) {
        int[] dp = new int[n];
        dp[0] = array[0];
        dp[1] = Math.max(dp[0],array[1]);
        for(int i=2;i<n;i++){
            dp[i] = Math.max(dp[i-2]+array[i],dp[i-1]);
        }
        return dp[n-1];
    }
}

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值