多重背包问题--二进制优化

该博客探讨了多重背包问题的解决方法,与完全背包的区别,并提出二进制优化思路。通过将每个物品的限制个数转化为2的幂次组合,将问题转换为01背包问题,从而降低了时间复杂度从NVS优化到NVlogS。文中还提供了优化后的代码实现。

特征:每个物品的个数有限
集合划分跟完全背包一样,只不过k有上限s[i]

一、暴力解法

import java.util.Scanner;
public class Main{
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int N = in.nextInt();
        int V = in.nextInt();
        int[] v = new int[105];
        int[] w = new int[105];
        int[] s = new int[105];
        int[][] f = new int[105][105];
        for (int i = 1; i <= N; i++) {
            v[i] = in.nextInt();
            w[i] = in.nextInt();
            s[i] = in.nextInt();
        }
        // 时间复杂度为NVS
        for (int i = 1; i <= N; i++) {
            for (int j = 0; j <= V; j++) {
                for (int k = 0; k <= s[i] && k * v[i] <= j; k++) {
                    f[i][j]=Math.max(f[i][j],f[i - 1][j-k*v[i]]+k*w[i]);
                }
            }
        }
        System.out.println(f[N][V]);
        
    }
}

二、与完全背包优化的区别

完全背包是求前缀的最大值,而多重背包是求固定长度的窗口内的最大值

// 完全背包中 k 无上限
f[i][j] = max(f[i-1][j], f[i-1][j-v]+w, f[i-1][j-2*v]+2*w,...f[i-1][j-k*v]+k*w)
         f[i][j-v] = max(f[i-1][j-v],   f[i-1][j-2*v]+w, f[i-1][j-3*v]+2*w,...f[i-1][j-k*v]+k*w)

k无上限所以直接用f[i][j-v]替代 f[i][j] 后面的部分
但多重背包问题中每个物品的上限为s[i]

// 多重背包问题中每个物品的上限为s[i],用s表示
f[i][j] = max(f[i-1][j], f[i-1][j-v]+w, f[i-1][j-2*v]+2*w,...f[i-1][j-s*v]+s*w)
         f[i][j-v] = max(f[i-1][j-v],   f[i-1][j-2*v]+w,...f[i-1][j-s*v]+(s-1)*w + f[i-1][j-(s+1)*v]+s*w)

可以看出f[i][j-v]f[i][j]多了一项 f[i-1][j-(s+1)*v]+s*w,这一项无法去除,故无法用完全背包的优化思路

三、二进制优化思路

1 、需要明白一个前提

我们知道任意一个实数可以由二进制数来表示,也就是20~2k其中一项或几项的和。
这个前提其实就是二进制转化成十进制的方法,1110 (2) => 23+22+21+0*20=14
反过来就是 14 可以用 23、22、21这三个数字组成

2、针对题目

所以每个物品的s[i]可以用若干堆2的幂次方个数来表示,以此可优化为01背包问题
但与二进制表示数不同的是此题中的优化必须是按顺序来的,即:20+21+22+23...2k
二进制表示中是不按顺序的

比如:
10 在二进制可以表示为 23+21
此题中如果10个物品则只能表达为 20 + 21 + 22 + 3
堆数为log210的上取整=4堆

即如果s不是正好可以分为每个组都是2的幂个的
那么就可以划分成20+21+22+23...2k +c = 2k+1-1 +c = s``c < 2k+1
下图为转化过程
3780699CADABDBD62A229253AF3C005D.png
原为 3个物品,每个物品个数为s 的多重背包问题,二进制优化后转换成了 有log2SA+log2SB+log2SC(均为上取整)个物品,每个物品个数为1的01背包问题。
因为优化物品数量 发生变化,所以 v[]、w[] 数组开辟的空间也需要发生改变,之前是v[N],现在是v[log2SA+log2SB+log2SC(均为上取整)]

例如:
image.png
优化前开辟v[1005] w[1005] s[1005],优化后开辟N*log si ,log2000上取整是11,故应开辟1000*11+5(+5防越界),故开辟v[11005]

四、优化后代码

时间复杂度由NVS变为Nlog2S *V=NVlogS

import java.util.Scanner;
public class Main{
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int N = in.nextInt();
        int V = in.nextInt();
        int[] v = new int[11005];
        int[] w = new int[11005];
        int[] f = new int[11005];
        int cnt = 0;
        for (int i = 1; i <= N; i++) {
            int a,b,s;
            a = in.nextInt();
            b = in.nextInt();
            s = in.nextInt();

            int k = 1;
            while (k <= s) {
                cnt ++;
                v[cnt] = a * k;
                w[cnt] = b * k;
                s -= k;
                k *= 2;
            }
            if (s > 0) {
                cnt++;
                v[cnt] = a * s;
                w[cnt] = b * s;
            }
        }

        N = cnt;

        for (int i = 1; i <= N; i++) {
            for (int j = V; j >= v[i]; j--) {
                f[j] = Math.max(f[j],f[j -v[i]] + w[i]);
            }
        }
        System.out.println(f[V]);

    }
}

### 多重背包问题中的二进制优化 对于多重背包问题,当每种物品的数量较大时,直接枚举所有可能的选择会导致极高的时间复杂度。为了降低这种复杂度并提高效率,引入了二进制优化方法。 #### 朴素方法的时间复杂度过高 在处理大量相同数量的物品时,比如每种物品有2000个,总数达到1000种不同类型的物品,每个物品体积为2000单位的情况下,使用简单的枚举方式会使数据量变得异常庞大,使得常规算法难以承受其计算负担[^1]。 #### 二进制分解策略 通过将每个物品按照二进制位拆分来表示不同的组合数,可以有效减少需要考虑的状态数目。具体来说,假设某类物品最多可选`S`件,则可以通过一系列形如\( \{2^0, 2^1,...,2^{k-1}, S - (2^k - 1)\} \) 的子集覆盖所有的选取可能性,其中 \( k=\lfloor\log_2(S)\rfloor\) 。这种方法不仅简化了状态转移方程的设计,还大大降低了整体运算次数[^3]。 #### C++实现示例 以下是基于上述理论改进后的C++代码片段: ```cpp #include <iostream> using namespace std; const int N = 1e5 + 7; int dp[N]; struct Item { int v, w, s; }; void binary_optimization(Item items[], int n, int m) { vector<Item> new_items; for (int i = 0; i < n; ++i) { int num = items[i].s; for (int cnt = 1; ; cnt <<= 1) { if (cnt > num) break; new_items.push_back({items[i].v * cnt, items[i].w * cnt}); num -= cnt; } if (num > 0) new_items.push_back({items[i].v * num, items[i].w * num}); } memset(dp, 0, sizeof(dp)); for (auto& item : new_items) for (int j = m; j >= item.v; --j) dp[j] = max(dp[j], dp[j - item.v] + item.w); } int main() { int n, m; cin >> n >> m; Item items[n]; for (int i = 0; i < n; ++i) cin >> items[i].v >> items[i].w >> items[i].s; binary_optimization(items, n, m); cout << dp[m] << endl; } ``` 此版本利用了动态规划的思想,在遍历过程中不断更新最优解,从而实现了更高效的求解过程[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值