25.二叉树的中序遍历

94. 二叉树的中序遍历

难度简单1030

给定一个二叉树的根节点 root ,返回它的 中序 遍历。

示例 1:

img

输入:root = [1,null,2,3]
输出:[1,3,2]

示例 2:

输入:root = []
输出:[]

示例 3:

输入:root = [1]
输出:[1]

示例 4:

img

输入:root = [1,2]
输出:[2,1]

示例 5:

img

输入:root = [1,null,2]
输出:[1,2]

递归

若当前节点不为空,则递归把左子树所有结点的值放进ans中,再将当前节点的值放进ans中,再递归把右子树所有结点的值放进ans中

定义 inorder(root) 表示当前遍历到 \textit{root}root 节点的答案,那么按照定义,我们只要递归调用 inorder(root.left) 来遍历 \textit{root}root 节点的左子树,然后将 \textit{root}root 节点的值加入答案,再递归调用inorder(root.right) 来遍历 \textit{root}root 节点的右子树即可,递归终止的条件为碰到空节点。

代码

class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<Integer>();
        inorder(root, res);
        return res;
    }

    public void inorder(TreeNode root, List<Integer> res) {
        if (root == null) {
            return;
        }
        inorder(root.left, res);
        res.add(root.val);
        inorder(root.right, res);
    }
}

迭代(进阶)左根右·

将整课树的最左边一条链压入栈中,每次取出栈顶元素,并记录栈顶元素,如果它有右子树,则将右子树压入栈中。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> ans = new ArrayList<Integer>();
        Stack<TreeNode> stk = new Stack<TreeNode>();
        TreeNode p = root;
        while(p!=null||!stk.isEmpty()){
            while(p!=null){
                stk.add(p);
                p = p.left;
            }
            p = stk.pop();
            ans.add(p.val);
            p = p.right;
        }
        return ans;



    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值