金融风控-贷款违约预测 -- task04

博主分享了在金融风控领域进行贷款违约预测建模的经验,遇到计算量大及模型过拟合的问题。使用随机森林模型,但ROC_AUC达到1.0,怀疑可能过拟合。计划后续研究并优化模型,提高效率,目前只完成了随机森林模型的运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

金融风控-贷款违约预测 – 建模调参

今天有点挫败感,遇到了个bug,暂时没有搞定。
大家都run的baseline,我一个人按照自己的理解做题,不知是好是坏,感觉不在一个频道上,不过,我这种自己做的,估计对整个流程的理解估计会比他们深吧。

今天只跑了一个模型,低估了模型计算的计算量,另外,发现了另外一个不好的点,使用pycharm,每次都需要重新运行,很浪费时间。

今天先贴下今天的战果吧,后面有结果再补充,组队学习完成了,但是学习还是没有完成的。

本来计算用下面几个模型run的,但是今天只完成了随机森林。

但是结果roc_auc 竟然是1.0~~~
太夸张了~

应该是过拟合了,后面再研究

万一是中了呢,我今天要提一次结果看下,哈哈

### 关于金融风控贷款违约预测的研究 #### 算法模型的选择与应用 在金融领域,尤其是针对贷款违约预测的任务,逻辑回归模型是一种常用的技术手段。该模型能够基于申请者的个人信息以及信用记录等多种维度的数据来评估其还款能力并预测潜在的风险程度[^2]。 对于更加复杂的场景,则可以考虑采用集成学习方法或是神经网络等高级机器学习技术来进行更为精准的分类决策支持系统构建工作。这些先进的算法不仅具备强大的表达能力和泛化性能,在面对大规模高维稀疏特征空间时也能保持良好的稳定性和准确性。 #### 数据预处理的重要性 值得注意的是,在建立任何有效的预测框架之前,必须先解决好原始数据中存在的质量问题。例如存在大量缺失项的情况就需要特别关注;因为如果直接忽略掉这部分样本可能会引入偏差从而影响最终的结果解释力。为此可以通过均值填补、K近邻插补等方式完成初步清洗流程后再投入训练过程之中[^3]。 #### 可视化工具助力效果验证 为了直观展示不同阈值下真阳性率(TPR)同假阳性率(FPR)间的关系曲线即ROC曲线,Python提供了便捷绘图函数`plot_roc_curve()`用于快速绘制此类图表辅助理解模型表现优劣之处[^4]。 ```python from sklearn.metrics import plot_roc_curve import matplotlib.pyplot as plt def visualize_model_performance(model, X_test, y_test): fig, ax = plt.subplots() viz = plot_roc_curve(model, X_test, y_test, name='ROC fold ', alpha=0.3, lw=1, ax=ax) base_fpr, base_tpr, _ = viz.roc_curve mean_auc = viz.roc_auc plt.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r', label='Chance', alpha=.8) plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver Operating Characteristic Curve') plt.legend(loc="lower right") plt.show() ``` 此段代码定义了一个名为`visualize_model_performance` 的函数,接收已训练好的模型对象及其对应的测试集作为输入参数,并调用了内置库sklearn中的`plot_roc_curve` 函数生成ROC图像以便观察当前模型的表现情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值