在日常使用pandas读取表格时,有些列是日期格式但是经pandas转换成dataframe后变成了字符串格式,于是需要进行二次转换
now_file="xxx.xlsx"
df=pd.read_excel(now_file)
#首先将业务日期列字符串类型转为日期类型
df['业务日期'] = pd.to_datetime(df['业务日期'])
#但此时df['业务日期']列数据类型为pd的timestamp类型,不是python里的datatime类型
#将业务日期列 timestamp对象转为date类型
df['业务日期'] = df['业务日期'].dt.date
#调用apply方法将df['业务日期']所有date类型数据格式化为%Y-%m-%d
#调用strftime格式化之前将所有的nan类型数据转换为None类型
df_rpa['业务日期'] = df_rpa['业务日期'].apply(lambda x: None if pd.isna(x) else x)
df['业务日期']=df['业务日期'].apply(lambda x:x.strftime("%Y-%m-%d") if x else x)