本题要求实现一个函数,用下列公式求cos(x)的近似值,精确到最后一项的绝对值小于e:
cos(x)=x0/0!−x2/2!+x4/4!−x6/6!+⋯
函数接口定义:
double funcos( double e, double x );
其中用户传入的参数为误差上限e
和自变量x
;函数funcos
应返回用给定公式计算出来、并且满足误差要求的cos(x)的近似值。输入输出均在双精度范围内。
裁判测试程序样例:
#include <stdio.h>
#include <math.h>
double funcos( double e, double x );
int main()
{
double e, x;
scanf("%lf %lf", &e, &x);
printf("cos(%.2f) = %.6f\n", x, funcos(e, x));
return 0;
}
/* 你的代码将被嵌在这里 */
double jiecheng(double i) {
if (i <= 1) return 1;
else return i * jiecheng(i - 1);
}
// 计算 cos(x) 的近似值
double funcos(double e, double x) {
int flag = 2;
double i = 2, sum = 1, cou;
while (1) {
cou = pow(x, i) / jiecheng(i);
if (flag % 2 != 0) {
sum += cou;
} else {
sum -= cou;
}
if (fabs(cou) < e) break; // 当前项小于误差上限时退出循环
flag++;
i += 2; // 每次递增2,因为偶数项
}
return sum;
}