一、基本概念
1.1.1感知机
- 感知机 (Perceptron)是二分类的线性分类模型;
- 其输入为实例的特征向量,输出为实例的类别,取+1和-1;
- 感知机对应于输入空间(特征空间)中将实例划为正负两类的分离超平面,属于判别模型;
- 感知机的作用就是找到一个分离超平面,使数据能够正确分为两类;
- 感知机预测是用学习得到的感知机模型对新的输入实例进行分类,是神经网络与支持向量机的基础。
1.1.2数学定义
数学上对感知机进行如下定义:
- 其中wx+b定义了一个超平面,可以不断改变权重w和偏差b来改变它的位置;
- 当x位于直线上方则结果为正,反之为负;
- 感知机不能表示非确定性的答案,实际应用中通过不断地训练,不断改变w和b来使结果更加准确。
1.2.1多层感知机
- 由单个神经元组成的感知机是指具有单一线性层的模型,无法解决非线性问题;
- 将多