基于Keras定义的简单的神经网络

本文介绍了基于Keras的简单神经网络,主要用于解决手写数字识别问题。首先,概述了感知机的基本概念,强调了激活函数在引入非线性中的重要性。接着,展示了如何利用Keras定义一个神经网络,并在mnist数据集上进行训练。经过训练,模型在测试集上的准确率达到了92.22%。

一、基本概念

 1.1.1感知机

  • 感知机 (Perceptron)是二分类的线性分类模型;
  • 输入为实例的特征向量输出为实例的类别,取+1和-1;
  • 感知机对应于输入空间(特征空间)中将实例划为正负两类的分离超平面,属于判别模型;
  • 感知机的作用就是找到一个分离超平面,使数据能够正确分为两类;
  • 感知机预测是用学习得到的感知机模型对新的输入实例进行分类,是神经网络与支持向量机的基础。


1.1.2数学定义

数学上对感知机进行如下定义:

  • 其中wx+b定义了一个超平面,可以不断改变权重w和偏差b来改变它的位置;
  • 当x位于直线上方则结果为正,反之为负;
  • 感知机不能表示非确定性的答案,实际应用中通过不断地训练,不断改变w和b来使结果更加准确。

1.2.1多层感知机

  • 由单个神经元组成的感知机是指具有单一线性层的模型,无法解决非线性问题
  • 将多
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值