图像检索从入门到进阶

图像检索从入门到进阶

参考资料:
b站视频:https://www.bilibili.com/video/BV1Cc411h7kB/?spm_id_from=333.788.recommend_more_video.-1
讲解内容:
Part1:图像检索入门
图像检索的定义、图像检索的典型应用和流程。
Part2:图像检索特征
图像全局特征和图像局部特征,以及图像检索过程。
Part3:图像检索案例
以图像检索的应用和竞赛为案例,讲解解决方案。
一、图像检索入门
图像检索是计算机视觉中基础的应用,可分为文字搜图TBIR和以图搜图CBIR。借助于卷积神经网络CNN强大的建模能力,图像检索的精度越发提高。
即,检索分为:
1)从文字检索TBIR(例如,输入文字周杰伦检索出周杰伦的图片)
2)从内容检索CBIR(例如,输入图片检索图片中是周杰伦)
图像检索即CBIR。
CBIR有非常广泛的应用前景,比如,拍照购、服装检索、人脸识别、内容审核。
成熟的图像检索应用涉及到相关算法,也是一个工程问题。不同类型应用有不同的检索逻辑、排序逻辑。
比如下图图像检索的过程:
首先从一张图片中识别出图像中的主体是什么,比如识别出了鞋子,接着要识别出鞋子的位置和对应类别,再去提取相应位置的特征,接着是进行检索的过程,对鞋子进行相似度的计算,最后产生一个相似度的排序(结果)。
在这里插入图片描述
图像检索的本质是特征提取和相似度计算的过程。
当然还有工程问题:
图像特征:如何将图像的内容进行有效表示?
相似度计算:如何衡量图像的相似性?
在这里插入图片描述(另外,图像是在特征提取那一步归一化成统一的尺寸。)
二、图像检索特征
即使相差万里的图像也有可能是相似的。
在这里插入图片描述
如果图像相似,则图像特征也相似。
图像检索:如果图像相似,则图像特征也相似。
图像局部特征:图像中关键位置,如角点、关键点。N128维度,N为关键点个数。
图像全局特征:图像整体的统计信息等,512维度。
在这里插入图片描述
局部特征
关注特征的局部信息,如SIFT关键点。
1)优点:关注图像的局部信息,具有尺度不变性。
2)缺点:提取的数量不固定,且容易受到文字影响。
全局特征
关注特征的全局信息,如颜色直方图、CNN特征。
1)优点:关注图像的全局信息,特征维度固定。
2)缺点:对尺度变换敏感。
在这里插入图片描述
如果使用图像局部特征,如何进行相似度计算?
可以使用局部特征点的匹配个数,如匹配个数较多,则为相似图像。但如果有N张图像,则两两之间匹配,需要分别计算N
(N-1)/2次。
在这里插入图片描述
在这里插入图片描述
三、图像检索案例
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值