细粒度分类:MC-Loss论文笔记——The Devil is in the Channels: Mutual-Channel Loss for FGVC

论文《The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification》提出MC-Loss,用于细粒度图像分类。该损失函数通过约束特征通道实现判别和多样性,无需额外参数,能提升网络在局部细节上的区分能力。实验表明,MC-Loss能有效减少区域冗余,提高分类精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

细粒度分类:MC-Loss论文笔记——The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification

综述

论文题目:《The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification》
期刊与时间:IEEE Transactions on Image Processing 2020 (TIP 2020)

论文地址:https://arxiv.org/pdf/2002.04264

源码地址(PyTorch版本):https://github.com/dongliangchang/Mutual-Channel-Loss

针对领域:细粒度图像分类(FGVC)

源码笔记:https://blog.csdn.net/qq_50001789/article/details/131353832?spm=1001.2014.3001.5501

主要思想

  细粒度分类任务中,由于类别间的视觉差异往往很微小,并且通常存在于局部细节中,因此

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉萌新、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值