判断一个有向图是否存在回路

本文介绍了一种使用深度优先搜索(DFS)判断有向图是否存在回路的方法,该算法适用于强连通图和非强连通图。在DFS实现中,visited数组记录已访问节点,count数组的count[0]用于标记是否找到回路,source参数表示源节点,s参数用于记录源节点。如果找到回路,输出1,否则输出0。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

判断一个有向图是否存在回路,除了采用拓扑算法以外,还可以使用深度优先搜索算法,本算法改编自“用邻接矩阵表示的深度优先搜索算法”,即DFS算法,两者共同点均为递归调用,DFS算法已在注释中标出,可进行对比学习。loop函数无论是强连通图和非强连通图均能判断出是否存在回路。

在loop函数中
1.visited数组用于记录被访问过的节点,和DFS算法中的visited数组相同。
2.count数组只有一个元素即count[0],初始值为1,若能找到回路,则count[0]=1;为什么用count[0]而不直接用int count变量?因为loop函数中要进行很多次递归调用,若用count变量,当形参改变时,实参的值并不能跟着改变,无法判断count的值是否改变。若是能找到回路,count[0]++只执行一次,即变为1.
3.形参source为源节点,以source为源节点,loop在遍历过程中是否能回到source节点,若能回到source节点,则存在回路。
4.形参s用于记录source节点,在loop函数不断递归过程中,source的值回不断的改变,无法知道源节点是哪个,故需要一个s来记录source 节点,s在递归过程中始终不变。

void loop(GraphMatrix *graphMatrix,int *visited,int source,int s,int *count)
{
   
   
    int j;
    visited[source]=1//源节点被遍历到,记录为1;
    for(j=0;j<graphMatrix->size;j++)
    {
   
   
        if(graphMatrix->graph[source][j]!=MAX&&j==s)//在每一次使用loop函数中,count[0]++其实只执行一次
        {
   
      count[0]++;
            printf("%d",count[0]);
        }

        if(graphMatrix->graph[source][j]!=MAX&&!visited[j])//若有节点还为遍历到,则继续递归
            loop(graphMatrix,visited,j,s,count);
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值