傅里叶变换的卷积定理

1. 时域相乘对应频域卷积

定理:

x(t)⋅w(t)↔F12πX(ω)∗W(ω) x(t) \cdot w(t) \xleftrightarrow{\mathcal{F}} \frac{1}{2\pi} X(\omega) \ast W(\omega) x(t)w(t)F2π1X(ω)W(ω)
即两个信号在时域上的相乘,在频域中将变成它们各自傅里叶变换的卷积。

详细解释:

假设你有两个时域信号 x(t)x(t)x(t)w(t)w(t)w(t),它们分别有傅里叶变换 X(ω)X(\omega)X(ω)W(ω)W(\omega)W(ω)

当你在时域上将这两个信号相乘 x(t)⋅w(t)x(t) \cdot w(t)x(t)w(t),那么在频域中,它们不再是直接相乘,而是卷积:
X(ω)∗W(ω)=∫−∞∞X(ξ)W(ω−ξ)dξ X(\omega) \ast W(\omega) = \int_{-\infty}^{\infty} X(\xi) W(\omega - \xi) d\xi X(ω)W(ω)=X(ξ)W(ωξ)dξ
卷积的直观解释是:卷积将一个信号与另一个信号在频域上平滑地叠加,产生一个新的频谱。每个频率分量 ω\omegaω 不再是简单的乘积,而是结合了所有可能的频率相互作用的结果。

为什么是卷积?

在时域上相乘意味着两个信号的值在每个时间点都被相乘。傅里叶变换通过频率的加权和分析信号的频率分量。当两个信号在时域相乘时,其频域表示将包含所有频率之间的交互。这个交互关系就是通过卷积来表示的,它考虑了所有可能的频率差异和叠加。

应用场景:

在信号处理中,时域相乘通常对应于对信号进行“窗口化”操作。这种情况下,窗口化的信号在频域上会变得更加复杂,呈现为两个信号频谱的卷积。


2. 时域卷积对应频域乘积

定理:

x(t)∗w(t)↔FX(ω)⋅W(ω) x(t) \ast w(t) \xleftrightarrow{\mathcal{F}} X(\omega) \cdot W(\omega) x(t)w(t)FX(ω)W(ω)
即两个信号在时域上的卷积,在频域中将变成它们各自傅里叶变换的乘积。

详细解释:

假设你有两个时域信号 x(t)x(t)x(t)w(t)w(t)w(t),如果这两个信号在时域上进行卷积:
(x∗w)(t)=∫−∞∞x(τ)w(t−τ)dτ (x \ast w)(t) = \int_{-\infty}^{\infty} x(\tau) w(t - \tau) d\tau (xw)(t)=x(τ)w(tτ)dτ
那么在频域中,这个卷积会变成它们各自傅里叶变换的简单乘积:
X(ω)⋅W(ω) X(\omega) \cdot W(\omega) X(ω)W(ω)

为什么时域卷积变成频域乘积?

卷积的本质是将一个信号平滑地“滑过”另一个信号并叠加起来。在时域上,卷积相当于“滤波”,即把一个信号与另一个信号结合在一起。而傅里叶变换将这种平滑的叠加在频域中表示为频谱的乘积,因为频域中的乘积更直观地反映了不同频率分量的组合。

因此,当两个信号在时域上进行卷积时,其结果可以看作是对频率分量的逐个相乘。每个信号在频域中代表它的频率分量,通过乘积可以直接看到不同信号的频率叠加效应。

应用场景:

在系统分析中,卷积是非常常见的操作。例如,线性时不变系统的输出是输入信号与系统的脉冲响应的卷积。通过傅里叶变换,时域中的卷积可以通过频域中的简单乘法来表示,从而简化计算。


总结:

  • 时域相乘对应频域卷积:两个信号在时域相乘时,其频谱包含了所有频率的交互,因此在频域上表现为卷积。
  • 时域卷积对应频域乘积:两个信号在时域卷积相当于在时间上平滑地组合它们。在频域上,卷积结果可以直接用频率分量的乘积表示。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值