2024-10-27-leetcode每日一题-684. 冗余连接

题目描述

树可以看成是一个连通且 无环 的 无向 图。

给定往一棵 n 个节点 (节点值 1~n) 的树中添加一条边后的图。添加的边的两个顶点包含在 1 到 n 中间,且这条附加的边不属于树中已存在的边。图的信息记录于长度为 n 的二维数组 edges ,edges[i] = [ai, bi] 表示图中在 ai 和 bi 之间存在一条边。

请找出一条可以删去的边,删除后可使得剩余部分是一个有着 n 个节点的树。如果有多个答案,则返回数组 edges 中最后出现的那个。

示例 1:

输入: edges = [[1,2], [1,3], [2,3]]
输出: [2,3]

示例 2:

输入: edges = [[1,2], [2,3], [3,4], [1,4], [1,5]]
输出: [1,4]

解题思路

并查集模板题,由题意易得只有一条冗余的边。先初始化并查集,将每个节点的父节点都设为自己,然后开始遍历所有的边,若a、b之间存在一条边,且他们两个节点不在同一个集合内,那么就将其合并到一起,若两个节点已经在一个集合了,则证明这条边为冗余的边,再合并就会成环。

AC代码

class Solution {
public:
    static const int N = 1e3 + 5;
    int p[N];
    int find(int x) {
        if(p[x] != x) 
            p[x] = find(p[x]);
        return p[x];
    }

    vector<int> findRedundantConnection(vector<vector<int>>& edges) {
        for(int i = 1; i <= edges.size(); i ++ )
            p[i] = i;
        vector<int> ans;  int idx = 0;
        for(auto edge: edges) {
            int node_a = edge[0], node_b = edge[1];
            if(find(node_a) == find(node_b)) {
                ans.clear();
                ans = {node_a, node_b};
            }
            else
                p[find(node_b)] = find(node_a);    
        }
        return ans;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值