算法竞赛进阶指南——0x06【倍增】

本文解析了ST算法如何通过RMQ(区间最值)问题的倍增思想进行预处理,介绍了`lla[]`和`f[][]`数组的使用,并详细讲解了`ST_prework()`和`ST_query()`函数的工作原理。重点在于理解ST算法如何高效地在区间中查找最大值。

文章目录


在这里插入图片描述

ST算法

RMQ【区间最值】的ST算法倍增思想的产物

ll a[N], f[N][20];//f表示从i起的2^j个数中的最大值
void ST_prework()//ST算法,处理RMQ【区间最值】问题【倍增算法】
{
    for (ll i = 1; i <= n; i++)
        f[i][0] = a[i];//先进行预处理[Ai~Ai]最大值为a[i]
    ll t = log2(n);//或者写成t=log(n)/log(m)【m=2】
    for (ll j = 1; j <= t; j++)
    {
        for (ll i = 1; i + (1 << j) - 1 <= n; i++)//注意减1是因为个数中包含了i
        {//把[i~i+2^j]分成[i~2^(j-1)-1]和[i+2^(j-1)~i+2^j]两段
            f[i][j] = max(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]); //+-比移位优先,所以注意()
        }
    }
}
****************************************************************************************
ll ST_query(ll l, ll r)
{
    ll k = log2(r - l + 1);//注意区间长度是[r-l+1]
    return max(f[l][k], f[r - (1 << k) + 1][k]);//将[l~r]分成[l~l+2^k-1]和[r-2^k+1~r]两段,即l的后2^k个数和r的前2^k个数;重合不要紧,不漏就行
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WTcrazy _

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值