神经网络:激活函数选择

        结论直接看——激活函数的选择方式

        神经网络主体分为输入层、隐藏层和输出层三个模块。一般情况下,输入层只负责对数据的输入,并不做任何的变换。故而,激活函数的选择只涉及隐藏层输出层两个模块。

        

神经网络主体图

激活函数的选择方式

        理论情况下,激活函数是可以根据需求,随意选择与组合的。但是经过前辈们的实验经验,下面的流程往往是效率最高的。(非绝对正确,仅作参考。若有更好的选择,欢迎分享。)

隐藏层

  1. 优先选择ReLU激活函数;
  2. 如果ReLU效果不好,那么尝试其他的激活函数(优先选择ReLU系列);
  3. 如果使用了ReLU,需要注意一下Dead ReLU问题;
  4. 少使用Sigmoid激活函数,可以尝试使用TanH激活函数(TanH多用于循环神经网络)。

注意:ReLU系列指的是以ReLU激活函数为基础,进行改变的一系列激活函数。

输出层

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值