结论直接看——激活函数的选择方式
神经网络主体分为输入层、隐藏层和输出层三个模块。一般情况下,输入层只负责对数据的输入,并不做任何的变换。故而,激活函数的选择只涉及隐藏层和输出层两个模块。

激活函数的选择方式
理论情况下,激活函数是可以根据需求,随意选择与组合的。但是经过前辈们的实验经验,下面的流程往往是效率最高的。(非绝对正确,仅作参考。若有更好的选择,欢迎分享。)
隐藏层
- 优先选择ReLU激活函数;
- 如果ReLU效果不好,那么尝试其他的激活函数(优先选择ReLU系列);
- 如果使用了ReLU,需要注意一下Dead ReLU问题;
- 少使用Sigmoid激活函数,可以尝试使用TanH激活函数(TanH多用于循环神经网络)。
注意:ReLU系列指的是以ReLU激活函数为基础,进行改变的一系列激活函数。
输出层