ImportError: /lib64/libm.so.6: version `GLIBC_2.27‘ not found

本文解决在Intel RealSense D455结合yolov5环境中遇到的ImportError问题,详细分析了错误原因并提供了解决方案,即创建支持pyrealsense2的Python 3.6虚拟环境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Intel RealSense D455 + yolo v5 环境搭建中出现错误:参考历程


问题描述

错误:anaconda3/envs/pyrealsense2/lib/python3.6/site-packages/pyrealsense2/init.py", line 2, in from .pyrealsense2 import *
ImportError: /lib64/libm.so.6: version `GLIBC_2.27’ not found (required by ~/lib/python3.6/site-packages/pyrealsense2/pyrealsense2.cpython-36m-x86_64-linux-gnu.so)

原因分析:

pyrealsense2不支持我现在的python版本,支持3.6版本


解决方案:

新建一个python版本为3.6的虚拟环境重新安装
conda create -n pyrealsense2 python=3.6

<think>嗯,用户遇到了TensorRT导入时的ImportError问题,提示缺少GLIBC_2.27。首先,我需要回忆一下之前处理过类似的GLIBC版本问题。根据提供的引用[1]和[2],其他库如torch_spline_conv和pyrealsense2也出现过同样的问题,解决方法可能类似。 用户提到错误信息是/lib64/libm.so.6找不到GLIBC_2.27,这说明系统当前的GLIBC版本低于2.27。首先应该确认系统的GLIBC版本。可以通过运行`ldd --version`来查看当前版本。如果版本低于2.27,就需要升级GLIBC或者找到其他解决方法。 不过,升级GLIBC有一定的风险,可能会影响系统稳定性,特别是如果系统有其他依赖旧版本的应用。引用[3]中提到,用户尝试从源码安装GLIBC_2.27,但遇到了libm.so.6被占用的问题,尽管已经链接到正确版本,但可能还存在问题。这时候可能需要谨慎操作,或者考虑其他方法。 另外,用户的问题是关于TensorRT的,可能需要检查TensorRT的版本是否与系统环境兼容。如果系统GLIBC版本无法升级,可能需要寻找不依赖GLIBC_2.27的TensorRT版本,或者使用Docker容器来提供一个兼容的环境。 还有,conda环境可能有自己的GLIBC依赖,或者可以通过conda安装特定版本的库来解决依赖问题。例如,使用conda安装较低版本的TensorRT,或者安装包含所需GLIBC的运行时环境。 总结可能的解决步骤: 1. 检查当前GLIBC版本。 2. 如果可能,升级GLIBC2.27,但需注意风险。 3. 使用Docker容器部署TensorRT,避免影响宿主机系统。 4. 检查TensorRT版本,降级到兼容的版本。 5. 使用conda安装预编译的TensorRT包,可能附带所需的依赖。 另外,用户可能没有提到他们是否尝试过这些方法,需要询问更多细节,比如系统版本、TensorRT安装方式等,但根据现有信息,给出以上建议。</think>针对TensorRT导入时出现的`GLIBC_2.27`缺失问题,以下是分步解决方案: --- ### **1. 确认系统GLIBC版本** 运行以下命令查看当前GLIBC版本: ```bash ldd --version ``` 若输出显示版本低于`2.27`(例如`2.17`),则系统需升级或采取替代方案[^3]。 --- ### **2. 解决方案选择** #### **方案一:升级GLIBC(高风险,需谨慎)** **步骤:** 1. 下载并编译GLIBC 2.27: ```bash wget http://ftp.gnu.org/gnu/glibc/glibc-2.27.tar.gz tar -xzf glibc-2.27.tar.gz cd glibc-2.27 && mkdir build && cd build ../configure --prefix=/usr --disable-profile --enable-add-ons --with-headers=/usr/include make -j$(nproc) && sudo make install ``` 2. **注意**:编译可能因`libm.so.6`被占用失败。若已确认软链正确(如`libm.so.6 -> libm-2.27.so`),可尝试重启系统或忽略报错。 --- #### **方案二:使用Docker容器(推荐)** 通过Docker隔离环境,避免直接修改系统库: 1. 拉取预装高版本GLIBC的镜像: ```bash docker pull nvcr.io/nvidia/tensorrt:22.xx-py3 # 选择官方TensorRT镜像 ``` 2. 启动容器并挂载代码: ```bash docker run -it --gpus all -v /path/to/your/code:/workspace nvcr.io/nvidia/tensorrt:22.xx-py3 ``` --- #### **方案三:使用conda环境(需验证兼容性)** 通过conda安装兼容的TensorRT版本: 1. 创建新环境: ```bash conda create -n tensorrt_env python=3.8 conda activate tensorrt_env ``` 2. 安装TensorRT: ```bash conda install -c conda-forge tensorrt # 可能附带兼容的GLIBC依赖 ``` --- #### **方案四:降级TensorRT版本** 若升级GLIBC不可行,尝试安装适配低版本GLIBC的TensorRT: 1. 从NVIDIA官网下载旧版TensorRT(如8.x),参考[官方文档](https://developer.nvidia.com/tensorrt)。 --- ### **3. 验证修复** 导入TensorRT并检查是否报错: ```python import tensorrt print(tensorrt.__version__) # 输出版本号即成功 ``` --- ### **注意事项** - **系统影响**:直接升级GLIBC可能导致系统崩溃,建议优先使用Docker或conda[^1]。 - **硬件兼容性**:TensorRT需匹配CUDA版本,确保与NVIDIA驱动兼容。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

韵诗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值