python 高效求解质数-- 埃氏筛法

这篇博客介绍了两种在Python中寻找质数的方法:暴力穷举和埃氏筛。暴力穷举通过两层循环判断每个数的因数,而埃氏筛则利用质数的性质,先标记所有数为质数,然后从2开始,将质数的倍数标记为非质数,显著提高了效率。埃氏筛在大数据量下表现更优,如在一亿范围内寻找质数只需约3分钟。这两种算法的时间复杂度分别为O(n^1.5)和O(nloglogn)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python高效求解质数

质数的定义:在大于 1 的自然数中,除了 1 和它本身以外不再有其他因数的自然数。因此对于每个数 x,我们可以从小到大枚举 [2,x−1] 中的每个数 y,判断 y 是否为 xx 的因数。

暴力穷举

n = 151100  
k = 0
z = []
for i in range(2,n):
    for j in range(2,int(i**0.5)+1):  # 开方,减少循环的次数
        if i%j == 0:
            break
    else:
        k+=1
        z.append(i)
print(k) # 个数
print(z) # 质数

埃氏筛

如果 x是质数,那么大于 x 的 n 的倍数 2x,3x,… 一定不是质数,
首先生成一个数组用来储存数字是否是质数,默认都是质数,出现一次质数就将它的倍数全部标记为不是质数,

埃氏筛刚开始的运行时间较长,因为要不断的对质数倍数的标记,后面的运行就会越来越快
一亿个数大概不到3分钟就可以找出来所有的质数

结合这个图能够更好的理解
在这里插入图片描述

n = 10**8  # 代求的范围中的最大值
k = 0
s = [True for i in range(n)]  # 首先默认所有数都是质数
z = []
for i in range(2,n):
    if s[i]:  # 判断是否为质数,如果没有被标记过,就是质数
        k+=1
        z.append(i) #添加质数
        for j in range(i+i,n,i):   # 将是指数的倍数的数都改为False
            s[j] = False

print(k) # 个数
print(z) # 质数

时间复杂度 O(nloglogn)

质数筛最少需要一个长度为n的数组进行存储标识

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱喝水的小鲨鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值