目录
2023.7.3-2023.7.7
1.研究计划
(1)对反演文献中的基本概念进行梳理
2.完成情况
卷积
1.数学公式
1D离散形式
1D连续形式
2D离散形式(矩阵的内积-对应元素相乘,再所有位置相加)
共同特点:约束条件(一个常量)是卷积的自变量。
g:是做变换的函数/矩阵(根据问题的实际应用意义设计),是对的180°旋转(不分顺时针、逆时针),叫“翻转“。
f:关注的点,是被G改变的对象(根据g的维度选取)
输入:3X3,
输出:一个数
2.物理意义
1D举例:掷2枚骰子,想知道出现两个骰子出现的点数和为4的概率;
1D连续:开包子铺,想知道1天内(24小时)生产包子的腐败率;
信号分析,每个时刻都会有输入f且输入信号都有同一个衰减函数g,最终输出的是这一时刻T所有之前输入信号的累积效果;
2D离散:图像处理,对关注的噪点进行平滑/提取边缘,实际是加权求和。对图片进行压缩。
3.实际应用
2D离散,对图像的噪点进行平滑(模糊)或者是边缘提取(锐化)
模糊:g取;锐化:g取
4.卷积的优势在于,权重共享和平移不变性。同时还考虑到了像素空间的关系(理解:特征出现的位置信息,与池化层(不关心位置-实现判断)出现的意义对比理解),而这一点很有用,特别是在计算机视觉任务中,因为这些任务通常涉及识别具有空间关系的对象。
5. 算法Padding: 可以将Padding理解为在图像外围补充一些像素点。padding可以保持空间输出维度等于输入图像,必要的话,可以在输入外围填充0。另一方面,unpadding卷积只对输入图像的像素进行卷积,没有填充0.输出的尺寸将小于输入。
弹性
应力张量和应变张量 之间最一般的线性关系叫做弹性张量
(弹性就是线性关系)
模量
体积模量 也称为不可压缩量,是材料对于表面四周压强产生形变程度的度量。它被定义为产生单位相对体积收缩所需的压强。它在SI单位制中的基本单位是帕斯卡。
(多大的压强使固体产生单位体积的形变)
Lamé常数
在连续力学中,Lamé常数(也称为Lamé系数或Lamé参数)是由应变-应力关系中出现的λ和μ表示的两个材料相关量。通常,λ和μ分别被分别称为Lamé的第一个参数和Lamé的第二个参数。
(作为参数刻画模量/速度,由材质本身决定)
共中心点
道集:单个地震检波器的接收记录,称之为一个地震道.多个地震道的集合,简称道集.(检波器的多个接受记录)图片上,每一条线代表一个地震接收记录,也就是一个道
它不是某点正下方埋藏底层的反射信号,而是是某个范围下方埋藏地质体的反射信号的综合表征。
共中心点道集:此道集是地震资料处理中最常用的一种道集形式,其道集中的所有道来自于同一个中心点.通过抽道集就可得到共中心点道集,即经常用的CMP道集,该道集进行动校正、水平叠加,就可得到水平叠加剖面.(没有偏移过)
作用:主要是消除多次波,面波等的影响,其象空间的一个脉冲对应目标空间一个圆,同理也可进行偏移
注意:共中心点道集当中的“共中心点”指的是地面上的共同中心点,而不是地下的共中心点。
(共反射点道集指的是同一个地下反射点反射回来的地震记录的集合。)
高程:指的是某点沿铅垂线方向到绝对基面的距离,称绝对高程
CRP( common reflecrtion point):共反射点道集
CDP( common depth point): 共深度点道集(2D)
CMP( common middle point):共中心点道集(3D)
上面讲了CDP,CRP,CMP的意思,在水平层状介质条件下,CDP与CMP是一样的,在倾斜
条件下,CDP与CMP是有差异的。在P波激发,P波接收时,CRP与CMP是一样的,若
是P波激发,S波接收,CRP与CMP是不一样的,两者有差异,具体差异,书上说的很明
白。还有一点,CDP通常为二维术语,而CMP是三维术语!
课本中常提起的三种道集:共炮点道集、共接收点道集、共反射点道集
共炮点道集:同一炮点激发,不同检波点接收的所有道形成道集为这一炮点的共炮点道集,
可用于求取炮点静校正的参数。(从中抽取)
野外采集记录到磁带上的数据经解编(时序转道序)后就是共炮点道集,为同一激发点激发所有检波器接收的来自地下不同反射点的地震道的集合。亦即道集中所有接收点有共同的炮点。它是以同一炮的不同道为坐标横轴、地震反射时间为坐标纵轴的数据排列方式。
共接收点道集:不同炮点激发,同一检波点接收的所有道形成道集为这一检波点的共接收点
道集,可用于求取接收点静校正的参数。
共反射点道集:每次观测到的都是来自地下同一点的反射,该反射点叫这些道的共反射点,
这些道组成的道集是该反射点的共反射点道集。(经过叠前时间偏移)
共偏移距道集:按照同一个偏移距,从不同共炮集或共道集数据抽取形成的道集,也就是说,
这个道集的(垂直)偏移距是相同的。此道集中的各接收点炮检距都相等,称之为共偏移距道集或等炮检距道集,它是以不同炮的不同道为坐标横轴、地震反射时间为坐标纵轴的数据排列方式。
共转换点道集是进行转换波勘探所形成的,与共反射点道集是相似的,只是计算方法不同。
平时接触的都是处理好的道集,只管使用。
相位
相位是将运动类比匀速圆周运动时的一个角度。它与圆心的连线OP’与水平向右方向夹角为θ,那么这个θ就称为相位角或相位。如果最初 t=0时θ=φ ,那么φ就称为初相位。随着P'点以角速度 ω 旋转,相位角会变为 θ=ωt+φ 。
横轴x和相位θ的关系:这样,物体P'的水平坐标就可以求出来了, x=Asin(ωt+φ), 这也就是做简谐运动的质点P点的位移随时间的变化规律。
作用:知道了相位,就可以确定这个物体此刻在振动中的位置;知道了两质点的相位差,就知道了两个质点运动时的步调关系(用圆上的角度记录/反映直线位置)
相位是存在于周期性现象中的,所以也可以用其他办法来想象,比如对于时钟,相位就是时针的位置,而北京时间和伦敦时间就有一个固定的相位差;或者大姨妈,(理想状态下)相当于周期性的脉冲,相位就是日子,而小红和小花就有一个(可能)固定的相位差。
最小相位子波:具有最短的能量延时,具有更快的响应时间
分辨率
地震分辨率:地震波能区分开的两个相邻地质体的最小距离
1.纵向分辨率:地震波能分辨的最小地层厚度(瑞利准则:极限是1/4波长),比如时间分辨率(为什么能用时间分辨率代表它,因为地震资料记录的是时间域的声压或振动信号。)
厚度=旅行时*介质波速
理解:地下目标体凡是大于该厚度的,都能被识别出来。
2.横向分辨率:地震波在横向上能分辨出的最小地质体的大小(表示:菲涅尔带半径)
(分辨率越小越好?这说明地震信号只要超过都能被分辨出,所以最小值越低它能识别的东西越多)
理解:地下目标体的反射界面凡是大于该大小的,都能被识别出来。
包络(每个线的最高/低点相连形成的曲线):两个波严格可分辨,子波包络互相分开。
主频:带有主观色彩的重要参数/特征,作用是反映信号中最重要的频率成分。
主频是指“一个包括很多不同频率成分的复杂信号中最主要的频率。对于一个被驱动的系统,主频就是驱动频率。对于一般的语言或音乐节目信号,主频是指信号的基频”。
取决于我们关注的那个问题
傅里叶分析:就是将时(间)域信号变换到频(率)域的一个重(主)要工具,目的是突出测量信号的某些特征,以方便专业人员描述和处理。
单道地震&多道地震
横向排列观测系统:虽然多个检波器(基元),但只有一个输出在检波器的几何中心点。对齐该中心点和震源,平行。
适用于浅水区、浅层高分辨率勘探
常用于单道地震。
纵向排列观测系统:写论文常见
用减少检波器基元的间距弥补纵向排列在浅水区高分辨率勘探的劣势。
常用于多道地震,也能用于单道地震。
选哪个系统看需求(单道/多道)
偏移距
有多重意思,主要指激发点到最近的检波器组中心的距离,常常分解为两个分量:垂直偏移距,即以直角到排列线的距离;纵偏移距,从激发点在排列线的投影到第一个检波器组中心的距离。(横向排列观测系统可以理解,纵向排列的呢?)
理解:推的源 与本来源的距离
实现绕射点归位
基于波场外推的地震偏移是一个利用检波器接收到的波场恢复出地下波场传播过程当中波场的形态,进而实现绕射点归位的一种方法。
波动方程偏移法的核心:由检波点接收到的数据反推出反射点的数据--由现在推过去
偏移距:震源与检波点的距离
半偏移距:地下反射点(中心点)与震源之间的距离。
为了提取道集用的
外推
就是恢复低频信号,肯定是反演里面的
1.从数学上来讲,波场外推是一个地震波传播过程的逆向过程。注意是逆向过程。
波场传播正过程:绕射点->检波点
波场外推的正过程(波场传播逆过程):检波点(现在)->绕射点(过去)--“由现在推过去”
即由检波点接收到的数据反推出反射点的数据
注:检波点-在地表VS绕射点-在地下
地震波传播方向是地下至地表
2.正向外推公式用推迟场来表示。同时反向外推中用超前场。(可惜我没懂!)
注:超前场(得到了前一时刻的函数)和推迟场(得到后面的函数)是根据地震波真实传播方向来说的
参考:https://www.zhihu.com/question/47765550/answer/107696739
共轭
一种关系 /共生/一个事的两面
1、共轭在数学、物理、化学、地理等学科中都有出现。 本意:两头牛背上的架子称为轭,轭使两头牛同步行走。共轭即为按一定的规律相配的一对。
2、通俗点说就是孪生。在数学中有共轭复数、共轭根式、共轭双曲线、共轭矩阵等。
在某些特性上相同,但在另一些特性上相反
例如:如果用来表示旋转,那么共轭表示的就是两个相反方向相同角度的旋转,如果将旋转变成时间的函数,就是两个相位相反的正弦波
小波
有限持续时间的波形,其平均值为零。将小波与正弦波进行比较,正弦波是傅里叶分析的基础,正弦曲线的持续时间没有限制—负无穷延伸到正无穷。正弦曲线是平滑的,小波往往是不规则和不对称的。
小波变换如同一台可变焦距的数学显微镜,改变各种焦距便可探测到被处理信号中所隐含的奇异点并识别出它的性质,或分析出非平衡信号所包含的各种成分,从而可有效地探测并诊断出精密复杂设备中的疑难故障。
适用于非稳定信号的处理
用处:小波分析通常能够揭示其他分析技术遗漏的信号或图像的特征,例如趋势、故障点、高阶导数的不连续性和自相似性。此外,由于小波提供的数据视角不同于傅立叶技术所呈现的数据视角,因此小波分析通常可以显著地对信号进行压缩或降噪而不会明显退化。
鲁棒性
与稳定性两者不是一回事。稳定是基础,鲁棒是建立在稳定基础上的。没有稳定的话,一切无从谈起。
鲁棒主要是指系统对于收扰和不确定等因素的一种能力,所以有鲁棒稳定性一词。
有时鲁棒性和系统性能是trade-off(协调/取舍)的关系,鲁棒性抵制扰动能力强了,系统的跟踪性能或者精度啥的会弱点……反之亦然
泛化:被定义为算法在看不见的例子上表现良好的能力。
全连接层
1.本质:就是全局卷积
通过一个3x3(人为选择的输入块)x5(核/权重矩阵的个数)x4096(神经元/感知器的个数)卷积层对所有的片片(特征函数的再分割)进行综合处理,是“全“的意思
2.作用:(1).把特征representation整合到一起,输出为一个值(因为是多个感知器,所以有多个值)。大大减少特征位置对分类带来的影响(本质:标量不体现位置,所以如果结果是一个数,能判断有还是没有,是还是不是,而不需要携带位置信息。)
(2).用许多神经元(看成一个多项式)去拟合数据分布
3.形式:大部分是两层以上
4.原因:一层代表多个多项式,一个有两层或以上fully connected layer就可以很好地解决非线性问题了
5.特点:全连接层参数特多(可占整个网络参数80%左右),近期一些性能优异的网络模型如ResNet和GoogLeNet等均用全局平均池化(global average pooling,GAP)取代全连接层来融合学到的深度特征
需要指出的是,用GAP替代FC的网络通常有较好的预测性能
6.参考:CNN 入门讲解:什么是全连接层(Fully Connected Layer)? - 知乎
周期跳跃
理解:对于某个接收器,上一次记录到波信号和下一次记录到波信号的时间差突然增大。(不是同一个波)
由于声波能量衰减太大,使得声波信号的首波只能触发路径较短的第一接收器线路,而不能触发路径较长的第二接收器线路,而只能被续至波信号触发。这时在声波时差曲线上,出现突然增大的时差。
反演问题分类
根据反演时使用信息的不同,反演方法可以分为走时/相位反演、振幅反演、全波形反演三大类。利用波场运动学信息反演出来的结果反映的是大尺度的地下速度模型的宏观特征,对于理想观测系统,它的分辨率可达到Fresnel带数量级。利用完整波场信息反演的方法则具有精确刻画模型细节的潜力,对于理想观测系统,反演结果的分辨率可达到波长数量级(卞爱飞,2010)。
全波形反演方法利用叠前地震波场的运动学和动力学信息,重建地下速度结构,具有揭示复杂地质背景下构造与岩性细节信息的潜力。根据研究需要,全波形反演既可以在时间域进行也可以在频率域实现。
测井数据
测井测的是密度、速度。由此计算得波阻抗(波阻抗差对应反射系数)。所以说测井数据能知道反射系数-深度。
测井是在有了界面之后做的,目的是想要标定分析的界面和实际界面之间的对应情况。那如何找这种对应情况呢?就是把界面的道集-知道深度与合成数据的道集(褶积结果)-知道反射系数做对比。所以说测井数据就是标签,因为它是两个图像对应上的准则。
注:道集是一条纵向线,是子波和反射系数经过褶积运算后的结果。看道集的左右震荡处就是一个分层。
3.问题
(1)卷积的变形体有哪些
(2)如何搭建一个卷积网络
4.下一步打算
整理地震正演课程的笔记,用Python搭建一个简易的CNN结构