canny边缘检测算法的python实现
前言
Canny边缘检测算子是John F. Canny于1986年开发出来的一个多级边缘检测算法。更为重要的是Canny创立了“边缘检测计算理论”(computational theory of edge detection)解释这项技术如何工作。(摘自百度百科)
一、canny边缘检测算法是什么?
边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。 这些包括(i)深度上的不连续、(ii)表面方向不连续、(iii)物质属性变化和(iv)场景照明变化。 边缘检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。而canny边缘检测算法就是为了解决这个问题提出来的一种解决模式。(摘自百度百科)
二、使用步骤
1.引入库
代码如下:
import cv2
import numpy as np
2.读入数据并处理数据
代码如下:
# 读取图像
grey = cv2.imread('lena.png')#读图
#进行图像数据处理
grey1 = cv2.cvtColor(grey, cv2.IMREAD_GRAYSCALE)
img =np.array( [[0]*512]*512 )
for k in range(0,512):
for i in range(0,512):
img[k][i]=grey1[k][i][0]
img = np.uint8(img)
3.高斯滤波
代码如下:
# 高斯滤波
kernel_size = 5 #高斯卷积核函数,老师推荐为3,但3的效果不如5
sigma = 1.4
img_blur = cv2.GaussianBlur(img, (kernel_size, kernel_size), sigma)
4.计算梯度和方向
代码如下:
# 计算梯度和方向
sobel_x = cv2.Sobel(img_blur, cv2.CV_64F, 1, 0, ksize=3)
sobel_y = cv2.Sobel(img_blur, cv2.CV_64F, 0, 1, ksize=3)
grad_mag = np.sqrt(sobel_x ** 2 + sobel_y ** 2)
grad_dir = np.arctan2(sobel_y, sobel_x)
5.非极大值抑制
代码如下:
# 非极大值抑制
grad_mag_max = np.zeros(grad_mag.shape)
for i in range(1, grad_mag.shape[0] - 1):
for j in range(1, grad_mag.shape[1] - 1):
#如果角度小于0,使其加上一个pi,量化至四个方向
if grad_dir[i, j] < 0:
grad_dir[i, j] += np