二分专题
二分之整数二分
给定一个按照升序排列的长度为 n 的整数数组,以及 q 个查询。
对于每个查询,返回一个元素 k 的起始位置和终止位置(位置从 0 开始计数)。
如果数组中不存在该元素,则返回 -1 -1
。
输入格式
第一行包含整数 n 和 q,表示数组长度和询问个数。
第二行包含 n 个整数(均在 1∼10000 范围内),表示完整数组。
接下来 q 行,每行包含一个整数 k,表示一个询问元素。
输出格式
共 q 行,每行包含两个整数,表示所求元素的起始位置和终止位置。
如果数组中不存在该元素,则返回 -1 -1
。
数据范围
1≤ n ≤100000
1≤ q ≤10000
1≤ k ≤10000
输入样例:
6 3
1 2 2 3 3 4
3
4
5
输出样例:
3 4
5 5
-1 -1
题意理解:
在升序排列的数组中给出一个数 ,若是该数在数组中存在,求它的的初始位置与末位置,不存在返回"-1 -1"。
算法处理
二分的本质是二段性不是单调性。
找绿色部分的左边界
// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用:
当mid在不满足性质时,mid+1成为绿色区域左边界,当mid满足性质时,mid成为绿色区域右边界
大致分为以下三步骤:
- 找中间值 mid = (l+r)/2
- if(check(mid))等于true或者是false,check(m)是检查m是在满足性质的区间(检查是不是在绿色区间)
- 更新l或者r
int bsearch_1(int l, int r)
{
while (l < r)
{
int mid = l + r >> 1;
if (check(mid)) r = mid; // check()判断mid是否满足性质
else l = mid + 1;
}
return l; //l与r相等 ,返回任意一个都可以
}
找红色部分的右边界
区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
当mid在不满足性质时,l成为不满足区域左边界,当mid在满足性质时,mid-1为不满足区域右边界
大致分为以下三步骤:
- 找中间值 mid=(l+r+1)/2 (这里要注意与上面求mid的区别,这里为什么要加 1 呢?这里需要考虑特殊情况的时候,比如在这个数组中只有 2 个数时[ 1, 2 ]时 ,当满足check(mid)条件时,l=mid ,如果mid=(l+r)/2的话 , mid就会向下取整l还是等于l ,就会陷入死循环 (l+r+1)/2向上取整,mid=r ,l=r就会避免发生这种情况)
- if(check(mid))等于true或者是false,check(m)是检查m是在满足性质的区间(检查是不是在红色区间)
- 更新l或者r
int bsearch_2(int l, int r)
{
while (l < r)
{
int mid = l + r + 1 >> 1;
if (check(mid)) l = mid;
else r = mid - 1;
}
return l;
}
代码实现
import java.util.*;
public class Main {
static int N = 100010;
static int[] arr = new int[N];
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int q = sc.nextInt();
for(int i = 0; i < n; i ++ ) {
arr[i] = sc.nextInt();
}
while(q -- > 0) {
int x = sc.nextInt();
int l = 0, r = n - 1;
while(l < r) {
int mid = l + r >> 1;
if(arr[mid] >= x) r = mid;
else l = mid + 1;
}
if(arr[l] != x) {
System.out.println("-1 -1");
} else {
System.out.print(l + " ");
l = 0; r = n - 1;
while(l < r){
int mid = (l + r + 1) >> 1;
if(arr[mid] <= x) l = mid;
else r = mid - 1;
}
System.out.println(l);
}
}
}
}
问题处理
什么时候用模板1?什么时候用模板2?
假设初始时我们的二分区间为[l,r],每次二分缩小区间时,如果左边界l要更新为 l = mid,此时我们就要使用模板2,让 mid = (l + r + 1)/ 2,否则while会陷入死循环。如果左边界l更新为l = mid + 1,此时我们就使用模板1,让mid = (l + r)/2。因此,模板1和模板2本质上是根据代码来区分的,而不是应用场景。如果写完之后发现是l = mid,那么在计算mid时需要加上1,否则如果写完之后发现是l = mid + 1,那么在计算mid时不能加1。
为什么模板要取while( l < r),而不是while( l <= r)?
本质上取l < r 和 l <= r是没有任何区别的,只是习惯问题,如果取l <= r,只需要修改对应的更新区间即可。
while循环结束条件是l >= r,但为什么二分结束时我们优先取r而不是l?
二分的while循环的结束条件是l >= r,所以在循环结束时l有可能会大于r,此时就可能导致越界,因此,基本上二分问题优先取r都不会翻车。
03.2 二分之浮点数二分
浮点数的问题比较简单
给定一个浮点数 n,求它的三次方根。
输入格式
共一行,包含一个浮点数 n。
输出格式
共一行,包含一个浮点数,表示问题的解。
注意,结果保留 6 位小数。
数据范围
−10000≤n≤10000
输入样例:
1000.00
输出样例:
10.000000
算法处理
当mid * mid * mid >= x,也就是mid>x的三次方根的时候,mid是右边界,所以r=mid,当mid<x的三次方根的时候,mid成为左边界
代码实现
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
double a = sc.nextDouble();
double l = -10000;
double r = 10000;
while(r - l > 1e-8) {
double mid = (l + r) / 2;
if(mid * mid * mid >= a) r = mid;
else l = mid;
}
System.out.printf("%.6f", l);
}
}