分别使用numpy和pytorch实现FNN例题
- 过程推导 - 了解BP原理
- 数值计算 - 手动计算,掌握细节
- 代码实现 - numpy手推 + pytorch自动
代码实现:
需要解决的问题:
1.对比【numpy】和【pytorch】程序,总结并陈述。
2.激活函数Sigmoid用PyTorch自带函数torch.sigmoid(),观察、总结并陈述。
3.激活函数Sigmoid改变为Relu,观察、总结并陈述。
4.损失函数MSE用PyTorch自带函数 t.nn.MSELoss()替代,观察、总结并陈述。
5.损失函数MSE改变为交叉熵,观察、总结并陈述。
6.改变步长,训练次数,观察、总结并陈述。
7.权值w1-w8初始值换为随机数,对比“指定权值”的结果,观察、总结并陈述。
8.权值w1-w8初始值换为0,观察、总结并陈述。
9.全面总结反向传播原理和编码实现,认真写心得体会。
目录
激活函数Sigmoid用PyTorch自带函数torch.sigmoid(),观察、总结并陈述。
损失函数MSE用PyTorch自带函数 t.nn.MSELoss()替代,观察、总结并陈述。
权值w1-w8初始值换为随机数,对比“指定权值”的结果,观察、总结并陈述。
过程推导
BP原理在上学期的机器学习西瓜书中已经学习过,当时也是推导过这个公式。
下面附上当时做的一些笔记:
对方向传播过程中某些参数的求导
接下来就是对BP算法的推导过程:
数值计算
上述推导过程中有些参数使用与深度学习里不一样,注意变换即可。
将题目中给出的具体数值代入推导出的公式中
将这个手动计算出的结果与代码实现的结果对照,观察是否相同。
事实上,从下面的代码实现结果中可以知道两个结果相同,说明计算正确
代码实现
numpy
输入值:x1, x2 = 0.5,0.3
输出值:y1, y2 =0.23, -0.07
激活函数:sigmoid
损失函数:MSE
初始权值:0.2 -0.4 0.5 0.6 0.1 -0.5 -0.3 0.8
目标:通过反向传播优化权值
import numpy as np
# 数据输入
w1, w2, w3, w4, w5, w6, w7, w8 = 0.2, -0.4, 0.5, 0.6, 0.1, -0.5, -0.3, 0.8
x1, x2 = 0.5, 0.3
y1, y2 = 0.23, -0.07
print("输入值 x0, x1:", x1, x2)
print("输出值 y0, y1:", y1, y2)
def sigmoid(z):
a = 1 / (1 + np.exp(-z))
return a
def forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8):
in_h1 = w1 * x1 + w3 * x2
out_h1 = sigmoid(in_h1)
in_h2 = w2 * x1 + w4 * x2
out_h2 = sigmoid(in_h2)
in_o1 = w5 * out_h1 + w7 * out_h2
out_o1 = sigmoid(in_o1)
in_o2 = w6 * out_h1 + w8 * out_h2
out_o2 = sigmoid(in_o2)
print("正向计算,隐藏层h1 ,h2:", end="")
print(round(out_h1, 5), round(out_h2, 5))
print("正向计算,预测值o1 ,o2:", end="")
print(round(out_o1, 5), round(out_o2, 5))
error = (1 / 2) * (out_o1 - y1) ** 2 + (1 / 2) * (out_o2 - y2) ** 2
print("损失函数(均方误差):", round(error, 5))
return out_o1, out_o2, out_h1, out_h2
def back_propagate(out_o1, out_o2, out_h1, out_h2):
# 反向传播
d_o1 = out_o1 - y1
d_o2 = out_o2 - y2
d_w5 = d_o1 * out_o1 * (1 - out_o1) * out_h1
d_w7 = d_o1 * out_o1 * (1 - out_o1) * out_h2
d_w6 = d_o2 * out_o2 * (1 - out_o2) * out_h1
d_w8 = d_o2 * out_o2 * (1 - out_o2) * out_h2
d_w1 = (d_o1 * out_h1 * (1 - out_h1) * w5 + d_o2 * out_o2 * (1 - out_o2) * w6) * out_h1 * (1 - out_h1) * x1
d_w3 = (d_o1 * out_h1 * (1 - out_h1) * w5 + d_o2 * out_o2 * (1 - out_o2) * w6) * out_h1 * (1 - out_h1) * x2
d_w2 = (d_o1 * out_h1 * (1 - out_h1) * w7 + d_o2 * out_o2 * (1 - out_o2) * w8) * out_h2 * (1 - out_h2) * x1
d_w4 = (d_o1 * out_h1 * (1 - out_h1) * w7 + d_o2 * out_o2 * (1 - out_o2) * w8) * out_h2 * (1 - out_h2) * x2
print("w的梯度:", round(d_w1, 2), round(d_w2, 2), round(d_w3, 2), round(d_w4, 2), round(d_w5, 2), round(d_w6, 2),
round(d_w7, 2), round(d_w8, 2))
return d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8
def update_w(w1, w2, w3, w4, w5, w6, w7, w8):
# 步长
step = 1
w1 = w1 - step * d_w1
w2 = w2 - step * d_w2
w3 = w3 - step * d_w3
w4 = w4 - step * d_w4
w5 = w5 - step * d_w5
w6 = w6 - step * d_w6
w7 = w7 - step * d_w7
w8 = w8 - step * d_w8
return w1, w2, w3, w4, w5, w6, w7, w8
if __name__ == "__main__":
print("权值w0-w7:",round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),
round(w8, 2))
for i in range(5):
print("=====第" + str(i+1) + "轮=====")
out_o1, out_o2, out_h1, out_h2 = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)
d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8 = back_propagate(out_o1, out_o2, out_h1, out_h2)
w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)
print("更新后的权值w:", round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),
round(w8, 2))
运行结果
pytorch
使用python实现,主要是为了观察链式求导的过程。
链式法则求导还是比较麻烦的,特别是层数比较深的时候,计算量很大,过程也很复杂,编程实现非常困难。真正在做深度学习时,不需要编程实现求梯度过程。框架可以通过计算图自动求导,大大提高了效率。
import torch
x = [0.5, 0.3] # x0, x1 = 0.5, 0.3
y = [0.23, -0.07] # y0, y1 = 0.23, -0.07
print("输入值 x0, x1:", x[0], x[1])
print("输出值 y0, y1:", y[0], y[1])
w = [torch.Tensor([0.2]), torch.Tensor([-0.4]), torch.Tensor([0.5]), torch.Tensor(
[0.6]), torch.Tensor([0.1]), torch.Tensor([-0.5]), torch.Tensor([-0.3]), torch.Tensor([0.8])] # 权重初始值
for i in range(0, 8):
w[i].requires_grad = True
print("权值w0-w7:")
for i in range(0, 8):
print(w[i].data, end=" ")
def forward_propagate(x): # 计算图
in_h1 = w[0] * x[0] + w[2] * x[1]
out_h1 = torch.sigmoid(in_h1)
in_h2 = w[1] * x[0] + w[3] * x[1]
out_h2 = torch.sigmoid(in_h2)
in_o1 = w[4] * out_h1 + w[6] * out_h2
out_o1 = torch.sigmoid(in_o1)
in_o2 = w[5] * out_h1 + w[7] * out_h2
out_o2 = torch.sigmoid(in_o2)
print("正向计算,隐藏层h1 ,h2:", end="")
print(out_h1.data, out_h2.data)
print("正向计算,预测值o1 ,o2:", end="")
print(out_o1.data, out_o2.data)
return out_o1, out_o2
def loss(x, y): # 损失函数
y_pre = forward_propagate(x) # 前向传播
loss_mse = (1 / 2) * (y_pre[0] - y[0]) ** 2 + (1 / 2) * (y_pre[1] - y[1]) ** 2 # 考虑 : t.nn.MSELoss()
print("损失函数(均方误差):", loss_mse.item())
return loss_mse
if __name__ == "__main__":
for k in range(5):
print("\n=====第" + str(k+1) + "轮=====")
l = loss(x, y) # 前向传播,求 Loss,构建计算图
l.backward() # 反向传播,求出计算图中所有梯度存入w中. 自动求梯度,不需要人工编程实现。
print("w的梯度: ", end=" ")
for i in range(0, 8):
print(round(w[i].grad.item(), 2), end=" ") # 查看梯度
step = 1 # 步长
for i in range(0, 8):
w[i].data = w[i].data - step * w[i].grad.data # 更新权值
w[i].grad.data.zero_() # 注意:将w中所有梯度清零
print("\n更新后的权值w:")
for i in range(0, 8):
print(w[i].data, end=" ")
运行结果
待解决问题
对比【numpy】和【pytorch】程序,总结并陈述。
从numpy版与pytorch版两次结果对比看,当训练轮数为5轮时,两次实验的结果差不太多,w的梯度都相同,pytorch版的部分结果精度较高一点,例如损失函数,权值w等;
当训练结果为50轮时,损失函数差距稍微变大了一些,其他的没有什么变化;
当训练结果为500轮时,两次实验结果差距依然不大,说明两个版本的效率是差不多的。
激活函数Sigmoid用PyTorch自带函数torch.sigmoid(),观察、总结并陈述。
激活函数计算板块是在计算h1,h2部分的,从上面代码运行结果中可以看出当训练的轮数少的时候使用Sigmoid函数和使用Pytorch自带函数torch.sigmoid()并没有什么较明显的差距,当轮数多的时候,可以看出torch.sigmoid()的精度高一些。
激活函数Sigmoid改变为Relu,观察、总结并陈述。
ReLU函数概念图
当将激活函数换为ReLU函数后:
def sigmoid(z):
a = 1 / (1 + np.exp(-z))
return a
def relu(z):
return np.maximum(0, z)
实验结果
在网上查出来的ReLU函数与Sigmoid函数的对比:
Relu是一个非常优秀的激活哈数,相比较于传统的Sigmoid函数,有三个作用:
1. 防止梯度弥散
2. 稀疏激活性
3. 加快计算
观察ReLu函数代码运行结果不难看出,损失函数(均方误差)下降的更快,在训练第五轮时就降到比较低的程度,所以说ReLU函数的收敛速度比Sigmoid函数更快。
ReLU函数可以使一部分神经元的输出为0,就造成了网络的稀疏性,即稀疏激活性,并且减少了参数之间的相互依存关系,防止梯度弥散。
损失函数MSE用PyTorch自带函数 t.nn.MSELoss()替代,观察、总结并陈述。
关于 t.nn.MSELoss()函数的更多用法,可以参考https://blog.csdn.net/qq_36201400/article/details/111473847
def loss_fuction(x1, x2, y1, y2): # 损失函数
y1_pred, y2_pred = forward_propagate(x1, x2) # 前向传播
# loss = (1 / 2) * (y1_pred - y1) ** 2 + (1 / 2) * (y2_pred - y2) ** 2 # 考虑 : t.nn.MSELoss()
loss_func = torch.nn.MSELoss() # 创建损失函数
y_pred = torch.cat((y1_pred, y2_pred), dim=0) # 将y1_pred, y2_pred合并成一个向量
y = torch.cat((y1, y2), dim=0) # 将y1, y2合并成一个向量
loss = loss_func(y_pred, y) # 计算损失
print("损失函数(均方误差):", loss.item())
return loss
运行结果
从上面结果的对比看来,当训练轮数多了之后,手写的收敛结果比直接调用torch.nn.MSELoss()更好一些。
损失函数MSE改变为交叉熵,观察、总结并陈述。
交叉熵:表示两个概率分布之间的距离,交叉熵越大,两个概率分布距离越远,两个概率分布越相异;交叉熵越小,两个概率分布距离越近,两个概率分布越相似.
修改函数代码:
def loss_fuction(x1, x2, y1, y2):
y1_pred, y2_pred = forward_propagate(x1, x2)
loss_func = torch.nn.CrossEntropyLoss() # 创建交叉熵损失函数
y_pred = torch.stack([y1_pred, y2_pred], dim=1)
y = torch.stack([y1, y2], dim=1)
loss = loss_func(y_pred, y) # 计算
print("损失函数(交叉熵损失):", loss.item())
return loss
运行结果
从图中看到,当训练轮数为500时,损失函数已经变为负的了。
- MSE 损失主要适用与回归问题,因为优化 MSE 等价于对高斯分布模型做极大似然估计,而简单回归中做服从高斯分布的假设是比较合理的
- 交叉熵损失主要适用于多分类问题,因为优化交叉熵损失等价于对多项式分布模型做极大似然估计,而多分类问题通常服从多项式分布
最大似然估计往往将损失建模为负对数似然,这样的损失一定等价于定义在训练集上的经验分布和定义在模型上的概率分布间的交叉熵,这个交叉熵根据模型定义有时可以转化为不同的损失
改变步长,训练次数,观察、总结并陈述。
import matplotlib.pyplot as plt
import torch
x1, x2 = torch.Tensor([0.5]), torch.Tensor([0.3])
y1, y2 = torch.Tensor([0.23]), torch.Tensor([-0.07])
print("=====输入值:x1, x2;真实输出值:y1, y2=====")
print(x1, x2, y1, y2)
w1, w2, w3, w4, w5, w6, w7, w8 = torch.Tensor([0.2]), torch.Tensor([-0.4]), torch.Tensor([0.5]), torch.Tensor(
[0.6]), torch.Tensor([0.1]), torch.Tensor([-0.5]), torch.Tensor([-0.3]), torch.Tensor([0.8]) # 权重初始值
w1.requires_grad = True
w2.requires_grad = True
w3.requires_grad = True
w4.requires_grad = True
w5.requires_grad = True
w6.requires_grad = True
w7.requires_grad = True
w8.requires_grad = True
def sigmoid(z):
a = 1 / (1 + torch.exp(-z))
return a
def forward_propagate(x1, x2):
in_h1 = w1 * x1 + w3 * x2
out_h1 = sigmoid(in_h1) # out_h1 = torch.sigmoid(in_h1)
in_h2 = w2 * x1 + w4 * x2
out_h2 = sigmoid(in_h2) # out_h2 = torch.sigmoid(in_h2)
in_o1 = w5 * out_h1 + w7 * out_h2
out_o1 = sigmoid(in_o1) # out_o1 = torch.sigmoid(in_o1)
in_o2 = w6 * out_h1 + w8 * out_h2
out_o2 = sigmoid(in_o2) # out_o2 = torch.sigmoid(in_o2)
print("正向计算:o1 ,o2")
print(out_o1.data, out_o2.data)
return out_o1, out_o2
def loss_fuction(x1, x2, y1, y2): # 损失函数
y1_pred, y2_pred = forward_propagate(x1, x2) # 前向传播
loss = (1 / 2) * (y1_pred - y1) ** 2 + (1 / 2) * (y2_pred - y2) ** 2 # 考虑 : t.nn.MSELoss()
print("损失函数(均方误差):", loss.item())
return loss
def update_w(w1, w2, w3, w4, w5, w6, w7, w8):
# 步长
step = 1
w1.data = w1.data - step * w1.grad.data
w2.data = w2.data - step * w2.grad.data
w3.data = w3.data - step * w3.grad.data
w4.data = w4.data - step * w4.grad.data
w5.data = w5.data - step * w5.grad.data
w6.data = w6.data - step * w6.grad.data
w7.data = w7.data - step * w7.grad.data
w8.data = w8.data - step * w8.grad.data
w1.grad.data.zero_() # 注意:将w中所有梯度清零
w2.grad.data.zero_()
w3.grad.data.zero_()
w4.grad.data.zero_()
w5.grad.data.zero_()
w6.grad.data.zero_()
w7.grad.data.zero_()
w8.grad.data.zero_()
return w1, w2, w3, w4, w5, w6, w7, w8
if __name__ == "__main__":
print("=====更新前的权值=====")
print(w1.data, w2.data, w3.data, w4.data, w5.data, w6.data, w7.data, w8.data)
Y=[]
X=[]
for i in range(40):
print("=====第" + str(i) + "轮=====")
L = loss_fuction(x1, x2, y1, y2) # 前向传播,求 Loss,构建计算图
L.backward() # 自动求梯度,不需要人工编程实现。反向传播,求出计算图中所有梯度存入w中
print("\tgrad W: ", round(w1.grad.item(), 2), round(w2.grad.item(), 2), round(w3.grad.item(), 2),
round(w4.grad.item(), 2), round(w5.grad.item(), 2), round(w6.grad.item(), 2), round(w7.grad.item(), 2),
round(w8.grad.item(), 2))
w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)
Y.append(L.item())
X.append(i)
plt.rcParams['font.sans-serif'] = ['SimHei'] # 可以plt绘图过程中中文无法显示的问题
plt.plot(X,Y)
plt.xlabel('迭代次数')
plt.ylabel('Loss,step=1')
plt.show()
print("更新后的权值")
print(w1.data, w2.data, w3.data, w4.data, w5.data, w6.data, w7.data, w8.data)
运行结果
、
权值w1-w8初始值换为随机数,对比“指定权值”的结果,观察、总结并陈述。
w1, w2, w3, w4, w5, w6, w7, w8 = torch.randn(1), torch.randn(1), torch.randn(1), torch.randn(1), \
torch.randn(1), torch.randn(1), torch.randn(1), torch.randn(1)
=====输入值:x1, x2;真实输出值:y1, y2=====
tensor([0.5000]) tensor([0.3000]) tensor([0.2300]) tensor([-0.0700])
=====更新前的权值=====
tensor([-0.3827]) tensor([1.1477]) tensor([0.3640]) tensor([0.4843]) tensor([-0.6357]) tensor([0.6936]) tensor([-0.2005]) tensor([-0.0979])
=====第0轮=====
正向计算:o1 ,o2
tensor([0.3918]) tensor([0.5663])
损失函数(均方误差): 0.215525820851326
grad W: 0.01 -0.0 0.01 -0.0 0.02 0.07 0.03 0.11
更新后的权值
tensor([-0.3931]) tensor([1.1503]) tensor([0.3577]) tensor([0.4858]) tensor([-0.6542]) tensor([0.6187]) tensor([-0.2265]) tensor([-0.2030])
可以看出,改变随机数值,改变了权值,但对收敛速度基本没有影响。
权值w1-w8初始值换为0,观察、总结并陈述。
w1, w2, w3, w4, w5, w6, w7, w8 = torch.Tensor([0]), torch.Tensor([0]), torch.Tensor([0]), torch.Tensor(
[0]), torch.Tensor([0]), torch.Tensor([0]), torch.Tensor([0]), torch.Tensor([0])
全面总结反向传播原理和编码实现,认真写心得体会。
反向传播算法的原理是利用链式求导法则计算实际输出结果与理想结果之间的损失函数对每个权重参数或偏置项的偏导数,然后根据优化算法逐层反向地更新权重或偏置项,它采用了前向-后向传播的训练方式,通过不断调整模型中的参数,使损失函数达到收敛,从而构建准确的模型结构。
反向传播算法可分为三个步骤:
(1)前向传播。将样本数据输入至网络,数据从输入层经过逐层计算传送到输出层,得到相应的实际输出结果。
(2)反向计算第L层神经元i的误差项,它表示网络的损失函数E对神经元的输出值的偏导数。
(3)根据优化算法计算每个神经元参数的梯度,并更新每个参数。
反向传播的提出其实是为了解决偏导数计算量大的问题,利用反向传播算法可以快速计算任意一个偏导数。反向传播算法的思想和前向传播是一样的,只是一个反向的过程,推导过程中注意链式法则,一层扣一环即可求得结果。
通过对反向传播BP公式的手动求导,对他的转变过程认识更加深刻一些,以及对反向传播的各个步骤,代码实现,都感觉有很明显的加强。
参考:
课程魏老师csdn主页:(https://blog.csdn.net/qq_38975453?type=blog)