这学期会时不时更新一下伊曼纽尔·德曼(Emanuel Derman) 教授与迈克尔B.米勒(Michael B. Miller)的《The Volatility Smile》这本书,本意是协助导师课程需要,发在这里有意的朋友们可以学习一下,思路不一定够清晰且由于分工原因我是从书本第13章写起,还请大家见谅。
第23章 跳跃-扩散模型的微笑曲线——介绍
跳跃
大部分证券的价格并非随时间平缓扩散;它们的变动会出现突然的跳跃。股票和指数一定存在价格跳跃。外汇市场有时会出现价格跳跃。商品价格也会出现跳跃
跳跃通常是指在很短的时间内价格发生大幅变动。“很短的时间内“几乎都是指在一个交易日内;“大幅”指变动幅度相比 σt\sigma\sqrt tσt 而言很大,也就是在这个时间段内的预期标准差。股票指数市场上很少出现非常大幅的跳跃现象(频率通常是好几年才会出现一次),但是一旦出现,会对经济、金融,尤其是心理造成非常重要的影响。在股票市场,价格跳跃大部分时候是大幅下跌,而个股价格既会向上跳跃也会向下跳跃
跳跃在解释微笑曲线的方面非常有吸引力,因为价格跳跃很容易导致短期负斜度曲线变陡峭且具有持续性,这恰是我们在股票指数市场中所观察到的
然而(从理论的角度看),跳跃违反了无套利风险中性定价原理,这是截至目前我们所有模型的基础。这是因为期权的标的资产价格可能会经历很多不同幅度的跳跃,而我们无法在每个瞬间都对这种期权进行对冲。相比风险中性定价原理,经济模型没有太大的吸引力,因为这类模型需要对行为进行深入研究后建模。为了避免这种情况,大部分跳跃-扩散模型在没有强有力说服力的前提下,仍然假设风险中性定价原理成立
跳跃对斜度影响的简析
假设,在当前时点 t=0t=0t=0 到到期日 t=Tt=Tt=T 之间,指数水平一次性跳跃 J%J\%J% 的可能性为 ppp。现在,我们假设在这段时间之内要么有1次跳跃,要么没有跳跃。如果没有跳跃,波动率就是 σ0\sigma_0σ0。下图粗略展示了在不同到期期限下,股票价格的概率分布情况
有两个因素会影响股票价格到期日分布情况,分别是扩散和跳跃。对数扩散下,到期日的标准差是 σ0τ\sigma_0\sqrt\tauσ0τ,随着 τ=T−t\tau=T-tτ=T−t 的增加而增加,而在跳跃情况下,标准差总是保持不变的。到期期限较短时,跳跃会导致在扩散分布的尾部出现明显的凸起。随着到期期限不断增加,扩散分布标准差的相对值会增加,而跳跃对整体分布影响的重要性会越来越低。在对期权估值的时候,跳跃对到期期限较短的期权影响更明显,随着到期期限的增加,这种影响会逐渐降低直至可以忽略,因为连续扩散对分布的效果会覆盖跳跃的效果
上图展示的是上述情况对应的隐含波动率曲面,此处,为了简便,假设扩散波动率不存在期限结构(也就是说,σ0\sigma_0σ0 不随时间的变化而变化)。注意,距离到期日较近的时候,微笑曲线的斜度非常高,但是期限较长时,微笑曲线就变得相对平坦。对指数期权而言,这并非是一个不切实际的波动率曲面,尤其是在到期期限较短的情况下。如果考虑了扩散波动率的期限结构,这个曲面还可以更接近实际情况
纯跳跃模型
现在,只对跳跃过程建模,并以此为基础,研究在实际中跳跃和扩散共同存在的情况
股价跳跃:校验与修正
上图展示的是在 Δt\Delta tΔt 时间内,股价 SSS 的对数扩散过程离散二叉树形图
股价上行或者下行的概率是有限的,但是股价变动过程是可以趋近于无穷小的,按照系数 Δt\sqrt{\Delta t}Δt 变动。在一个时间间隔区间内,ln(SS0)\ln(\dfrac{S}{S_0})ln(S0S) 的总方差就等于 σ2Δt\sigma^2\Delta tσ2Δt,游走变量为 μΔt\mu\Delta tμΔt。相对应的连续时间过程就是 dln(S)=μdt+σdZd\ln(S)=\mu dt+\sigma dZdln(S)=μdt+σdZ,也就是:
dSS=(μ+12σ2)dt+σdZ \frac{dS}{S}=(\mu+\frac{1}{2}\sigma^2)dt+\sigma dZ SdS=(μ+21σ2)dt+σdZ
在风险中性条件下,当无风险利率等于 rrr 时,我们需要调整离散过程,使得 μ=r−12σ2\mu=r-\frac{1}{2}\sigma^2μ=r−21σ2
跳跃本质上和扩散是不同的。上图展示的是在二叉树模型中的一个分叉上发生了跳跃。发生跳跃的概率很小,其系数是 Δt\Delta tΔt,但是跳跃 JJJ 的幅度可能会很大。这就是一个只有跳跃没有扩散的模型。如果我们令 J=0J=0J=0,那么树形图中的上行分叉和下行分叉的游走变量都是一样的,均为 μ′\mu'μ′。在这个模型中,时间间隔 Δt\Delta tΔt 越长,出现跳跃的概率 λΔt\lambda\Delta tλΔt 也就越高
现在来看一下在这个过程中 ln(S/S0)\ln(S/S_0)ln(S/S