归并排序:O(n * logn)
归并排序(Merge Sort)是一种基于分治法的排序算法,其基本思想是将数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并成一个有序的数组。归并排序的时间复杂度为 O(nlogn),是一个稳定的排序算法。(排序是否稳定在上篇快排中有介绍)快速排序
步骤介绍
- 分割(Divide)
- 将数组从中间分割成两个子数组,递归地对每个子数组进行分割,直到每个子数组的长度为1.
- 合并(Conquer)
- 将两个有序的子数组合并成一个有序的数组。合并时从两个子数组的第一个元素开始比较,将较小的元素放入结果数组中,并移动指针,直到所有元素都合并完毕.
代码:
/*
*二路归并算法
*/
public class MergeSort {
static int ans = 0;
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
//n为数组的长度
int n = scanner.nextInt();
int[] arr = new int[n];
//获取待排序数组的元素
for (int i = 0; i < n; i++) {
arr[i] = scanner.nextInt();
}
//temp作为填充数组
int[] temp = new int[n];
// 调用递归函数
new MergeSort().mergeSort(arr,temp,0,n - 1);
System.out.println(Arrays.toString(arr));
System.out.println(ans);
}
public void merge(int[] arr,int[] temp, int low, int high){
//中间节点位置
int mid = (low + high) / 2;
//待合并数组的首节点位置
int i = low;
//第二个待合并数组的首节点位置
int j = mid + 1;
//填充数组的首节点下标
int k = low;
System.out.println((i + 1) + "和合并" + (j + 1));
//比较两数组的大小进行填充
while (i <= mid && j <= high){
if(arr[i] > arr[j]){
temp[k] = arr[j];
k++;
j++;
ans += mid - i + 1;
}else{
temp[k] = arr[i];
k++;
i++;
}
}
//填充多余数组
while (i <= mid){
temp[k] = arr[i];
k++;
i++;
}
while (j <= high){
temp[k] = arr[j];
k++;
j++;
}
int cnt = low;
int tempLeft = low;
while (tempLeft <= high){
arr[cnt] = temp[tempLeft];
cnt++;
tempLeft++;
}
}
public void mergeSort(int[] arr,int[] temp, int low,int high){
if (low < high){
// 中间节点
int mid = (low + high) / 2;
// 分割数组,当数组长度为1时
mergeSort(arr, temp, low, mid);
mergeSort(arr, temp, mid + 1, high);
// 进行往上合并
merge(arr, temp, low, high);
}
}
}