Excel-Python实现线性回归

本文介绍了如何在Excel中利用数据分析工具进行线性回归,以及在jupyter环境中不借助库和借助sklearn库实现最小二乘法进行线性回归。通过20、200和2000组数据的实例,展示了不同方法的步骤和结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Excel数据分析实现线性回归

1、添加文件夹

Excel打开身高体重文件夹
在这里插入图片描述

2、 添加工具

(1)文件-选项-加载项
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
(2)点击转到,勾选分析数据库及分析数据库-VBA
在这里插入图片描述
在这里插入图片描述
(3)数据功能中看到数据分析,说明添加成功
在这里插入图片描述

3、实现线性回归

(1)数据分析-回归-20个数据域
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(2)输出图表
在这里插入图片描述
(3)双击体重,设置坐标轴格式,点击坐标轴选项,设置最大最小值,间隔单位
在这里插入图片描述
(4)修改后图像
在这里插入图片描述
在这里插入图片描述
(5)右键点击数据,添加趋势线,设置趋势线格式为线性,点击选择显示公式,显示R平方值
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(6)完成格式设置后图像
在这里插入图片描述
(7)同理200个数据组
在这里插入图片描述
(8)同理2000个数据
在这里插入图片描述

二、jupyter不借助库最小二乘法实现

(1)上传数据文件
在这里插入图片描述

(2)数据代码及结果
20组数据

import pandas as pd
import numpy as np
from numpy import array
from numpy import mea
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值