- 博客(33)
- 收藏
- 关注
原创 【AI交叉】心理学:人工智能如何揭示人类内心世界
**总结(200字):** 人工智能与心理学的交叉融合正在深刻改变传统心理研究与实践方式。AI通过情绪识别、心理健康预测、人格建模等技术,弥补了传统方法在数据规模、客观性和实时性上的不足,使心理分析更加精准、个性化。然而,这一领域仍面临数据隐私、模型可解释性、文化差异等挑战,且AI无法替代人类的情感连接与同理心。未来,AI或将成为心理学的“智能助手”,辅助诊断与干预,但真正的“理解”人类心智仍需突破意识建模与伦理边界。这一交叉学科的发展,不仅拓展了心理学的技术工具箱,也促使我们重新思考人类情感、认知与
2025-07-18 09:00:00
1485
原创 【AI交叉】生物:人工智能如何重塑生命科学?
摘要:人工智能正加速渗透生命科学领域,成为解码生命奥秘的重要工具。本文系统介绍AI在生物学的应用,包括基因组学、蛋白质预测、药物研发等核心场景,分析CNN、GNN等技术适配与挑战。典型案例如AlphaFold2在结构预测的突破,展现了AI从辅助工具向科研伙伴的转变趋势。尽管面临数据噪声、可解释性等挑战,AI与生物学的深度融合将推动科研范式革新,但需平衡技术应用与科学批判精神。未来多模态融合、可解释AI等方向值得期待,这一交叉领域将持续重塑生命科学研究格局。
2025-07-16 21:00:00
774
原创 【AI交叉】农业学:智慧农业与精准种植的新时代
本文探讨了人工智能(AI)技术在农业领域的应用与发展。AI通过计算机视觉、物联网、大数据分析和机器人技术,赋能智慧农业,实现精准种植、病虫害防控和自动化作业。尽管面临数据质量、成本和技术适应性等挑战,但AI仍推动农业从经验驱动转向数据驱动。未来,随着5G、边缘计算等基础设施完善,AI将在保障粮食安全、促进乡村振兴方面发挥更大作用,同时需要加强数据共享和伦理监管。智慧农业将成为农业现代化的重要助力。
2025-07-16 17:09:56
758
原创 【AI交叉】天文学:人工智能如何赋能星辰大海的探索
摘要:AI技术正深刻变革天文学研究。面对现代望远镜产生的TB级数据、微弱信号识别等挑战,AI在星系分类、系外行星探测、引力波分析等领域展现出强大优势。通过CNN、LSTM等技术,AI能高效处理天文图像、光变曲线等复杂数据。尽管存在数据标注少、模型解释性弱等挑战,AI已成为天文学家的"数字助手"。未来,AI将推动望远镜智能化发展,实现从"观测驱动"到"洞察驱动"的转变,帮助人类更深入地探索宇宙奥秘。(149字)
2025-07-16 17:03:06
933
原创 【AI交叉】地理:人工智能如何推动地理科学的智能转型?
摘要: 人工智能(AI)与地理科学的融合正推动学科变革,催生遥感分析、城市规划、灾害预警等创新应用。AI通过深度学习、机器学习等技术高效处理海量多源地理数据,解决传统方法在自动化、精度和预测能力上的局限。核心应用包括遥感图像智能识别(地物分类、变化检测)、空间建模(气象预测、交通流量)、智能地图服务及灾害响应系统。尽管面临数据异构、模型可解释性等挑战,AI+地理的跨学科优势显著,未来将向实时感知、全球动态监测方向发展,推动“地球智能体”系统的构建。该领域亟需复合型人才,以支撑智慧城市与可持续发展战略。参考案
2025-07-16 16:52:18
697
原创 【AI交叉】化学:人工智能如何重塑现代化学研究?
摘要: 人工智能(AI)正深度融入化学研究,显著提升分子预测、药物设计、合成规划等方向的效率。AI通过模式识别、预测能力和自动化优势,加速材料筛选、反应模拟等传统高成本过程。关键技术包括图神经网络、生成模型和强化学习,已应用于AlphaFold、IBM RXN等平台。然而,数据质量、模型可解释性等挑战仍存。未来,AI将内化为化学研究的核心,推动“无人实验室”和跨学科创新,甚至可能启发新化学原理的发现。AI与化学的融合,标志着科研范式的革命性演进。 (字数:149)
2025-07-16 16:47:16
991
原创 【AI交叉】物理:人工智能如何驱动现代物理研究?
AI技术正在深刻变革物理学研究范式。本文系统介绍了AI与物理学的交叉应用:1)神经网络求解微分方程(PINN)和符号回归助力物理建模;2)深度学习应用于高能粒子识别和量子态模拟;3)图像处理技术赋能天体物理观测;4)图神经网络加速材料发现。研究显示,AI在加速仿真、处理复杂系统等方面优势显著,但也面临物理一致性、可解释性等挑战。未来需发展具备物理归纳能力的AI模型,推动AI与物理的深度融合。这一交叉领域不仅拓展了科研边界,更将重塑物理研究的智能范式。
2025-07-16 16:45:28
774
原创 【初见AI】LLM+多智能体系统
本文探讨了大语言模型(LLM)与多智能体系统(MAS)结合的新范式——LLM多智能体系统。传统MAS存在构建成本高、扩展性差等问题,而LLM凭借语言理解、上下文感知和泛化能力,为智能体系统带来了革命性变革。文章介绍了LLM+MAS的三种典型范式:语言驱动代理、调度混合系统和LLM工具化应用,并梳理了该领域从理论探索到生态构建的发展历程。尽管面临一致性、成本、记忆和安全等挑战,LLM多智能体系统仍展现出向"AI社会"演进的重要潜力,未来研究将聚焦知识图谱集成、可验证体系构建等领域。这种群体
2025-07-16 16:28:27
832
原创 with torch.no_grad 和 model.eval() 的区别详解
PyTorch中torch.no_grad()和model.eval()是推理阶段常用的两个操作,但功能不同。torch.no_grad()通过禁用梯度计算来节省内存和计算资源,而model.eval()将模型切换为评估模式,主要影响Dropout和BatchNorm层的行为(如关闭Dropout、使用固定统计量)。两者通常配合使用,前者优化计算效率,后者确保模型层表现一致。训练时应使用model.train()并保持梯度计算,推理时则建议同时使用model.eval()和with torch.no_gra
2025-07-16 15:18:57
740
原创 深入理解批量标准化(Batch Normalization)及PyTorch代码验证
本文介绍了深度学习中的批量标准化(BN)技术,分析了其原理和实现方法。BN通过对每层输入进行归一化处理,缓解内部协变量偏移问题,从而加速训练、提高模型稳定性。文章详细阐述了BN的数学公式,并通过PyTorch代码验证了手动计算与内置BN层的一致性。同时总结了BN的主要优势(如加速收敛、提高稳定性)和局限性(计算开销大、对小批量敏感等)。实验表明,BN能有效改善神经网络训练过程,但在特定场景下仍需谨慎使用。
2025-07-16 14:27:25
1298
原创 vscode设置自动保存文件
VS Code自动保存设置教程 在VS Code中,依次点击菜单栏【文件】→【自动保存】,勾选后即可开启自动保存功能,无需手动按CTRL+S。该功能可实时保存代码修改,避免因忘记保存导致内容丢失。适用于Windows/Mac系统,提升开发效率。 (字数:98)
2025-05-24 20:16:30
263
原创 WPS PPT设置默认文本框
在使用某软件模板时,作者遇到了文本框格式问题,字体为24号粗体且带有行标,外观不美观。由于不熟悉软件操作,作者一度无法准确描述问题,感到非常困扰。经过一番摸索,作者终于找到了修改文本框的方法,解决了这一问题。文章反映了在软件使用过程中,遇到操作难题时,由于缺乏相关知识,用户可能会感到无助和沮丧。通过这次经历,作者也意识到了掌握基本软件操作技能的重要性。
2025-05-17 20:35:33
622
原创 查看电脑信息的方法-CPU核心数量、线程数量等
本文介绍了在Windows系统下查看CPU和显示屏基本信息的方法。对于CPU,可以通过CMD命令查看核心数、线程数、名称和时钟频率,也可以在任务管理器中查看。对于显示屏,可以通过系统设置查看刷新率。此外,还提到了使用nvidia-smi命令查看GPU信息。这些方法简单易行,适合快速获取硬件信息。
2025-05-17 11:30:18
984
原创 拓扑排序的两种实现
每一个DAG都有一个源点和汇点,对DAG进行DFS,结束时间最大的那个点一定是源点,结束时间最早的一定是汇点。因此,拓扑排序中第一个元素是源点,最后一个元素是汇点。算法描述为:找到DAG的源点将其插入链表,然后在DAG当中删除该源点和它的出边,在新的DAG当中重复上述步骤,直到图为空,得到的链表就是拓扑排序。,记录每个节点的开始时间(从白色变成灰色),结束时间(从灰色变成黑色),每当一个节点结束时将其插入链表头,直到图遍历结束。拓扑排序针对一张DAG,将所有节点按照结束时间从大到小依次排列。
2024-11-30 20:23:23
258
原创 卷积和相关辨析
卷积核相关都可以叫滤波操作。在数字图像处理领域,简单来说,滤波就是用一个模版在图像上滑动计算得到新元素构成一幅输出图像或者叫输出特征图。滤波器滑动的时候需要设置一个原点,,故(这里仅仅考虑矩形滤波器,这也是最常用的)形式化如下:设矩形滤波器大小是M×NM2a1N2b1ab∈N。
2024-11-28 11:47:04
667
原创 【记个笔记】torchvision版本需要升高一点
RuntimeError: Could not run ‘torchvision::nms’ with arguments from the ‘CUDA’ backend. This could be because the operator doesn’t exist for this backend, or was omitted during the selective/custom build process (if using custom build). If you are a Faceboo
2024-03-20 23:17:08
604
原创 空格引起的yaml文件读取错误
最近在进行代码交接的工作,我需要写一个配置文档。所有代码均在python下开发。我选择使用yaml文件作为配置文件。yaml文件其中的一段写法如下:使用如下代码读取yaml文件。
2023-11-18 16:06:45
548
原创 【ERROR: org.apache.hadoop.hbase.PleaseHoldException: Master is initializi】HBase单机模式意外退出导致后续创建崩溃的解决方法
错误原因:按照林子雨的大数据教程搭建好Hbase环境后,我使用创建表和添加一些属性的命令,一开始非常正常,但是当我输入一个中文的时候,通过get命令显示的时候出现的十六进制编码,本质上是对的,但是我更加希望能得到语义信息更加明显的中文。我的理解是:强制退出导致hbase存储文件中出现了意外的错误标注,导致hbase无法写入这个文件,也无法读取这个文件,因为根据hbase设计原理,一个主机上的文件出现问题那么以后都不能使用这个主机的东西,如果需要使用,则需要较为复杂的配置。
2023-04-30 00:20:27
3858
1
原创 ARM及Cortex-M4介绍
ARM的含义有三种。3.ARM是一类微处理器芯片或产品的统称,是采用ARM技术开发的RISC处理器的通称。从v7开始,ARM的主名是Cortex,而V7有很多版本,例如R、M等,M系列是Cortex的一个版本,针对微控制器和低成本应用专门优化的嵌入式微控制器(Micro Controller Unit)。Cortex-M4是ARM v7体系结构下M系列中的一款处理器,特性是:不但具备M3的所有功能,还扩展了面向DSP的指令集,如单指令多数据指令(SMID)和更快的单周期MAC操作。
2023-03-19 23:30:39
2432
原创 pytorch加载模型和模型推理常见操作
pth文件可以保存模型的拓扑结构和参数,也可以只保存模型的参数,取决于model.save()中的参数。
2023-03-07 22:54:02
6190
原创 朴素贝叶斯的数学原理,完全手推,一针见血
②朴素贝叶斯模型分为:高斯模型(连续)、多项式模型(离散)和贝努利模型(二值),如果分类的特征中有离散和连续两种特征,有两种方法可以解决这个问题。①如果需要分类的事件特征中有新的特征分量,那么使用拉普拉斯平滑技术给对应条件概率的分子分母同时加上一个数,一般是1,称为拉普拉斯平滑系数,作用是避免先验概率连乘时出现。,对于一个新的特征只需要查表计算所有类别的后验概率大小,最大的概率值对应的那个类别即是新特征送入朴素贝叶斯分类器的分类结果。朴素贝叶斯模型是一种生成式机器学习模型,其模型的数学原理是贝叶斯公式。
2023-01-28 21:54:32
337
原创 逻辑回归的数学原理与MLP的思想之根
可以说,逻辑回归的思想影响了人工神经网络的发展,将单纯的离散分类问题转换为了求解概率的连续问题,也为后来大名鼎鼎的。但是阶跃函数本身的性质不好处理(如微分),对于计算机来说并没有太大的实际意义,因此研究者们找到了sigmoid函数来替代阶跃函数。如今,具有惊人效果的神经网络中必不可少的激活函数机制,其根在逻辑回归,可见科学的大厦就是这样一步一步建成的。对于连续的问题使用线性回归和多项式回归是有效的,但是对于数据特征呈现出较强的离散性时,则必须使用逻辑回归。回归,可以处理多类分类问题。
2023-01-28 12:33:04
387
原创 线性回归及正则化总结,python实现,非sklearn
基于pytorch自动求导实现线性回归,总结实现L1、L2、eElasticNet三种基本正则化,缓解过拟合
2023-01-26 12:37:06
1190
原创 算法流程图组件的基本含义及画法举例(Kmeans)
流程图是表示算法流程的有效工具,主要包含四种基本组件:圆角矩形框(表示程序开始/结束)、直角矩形框(表示操作步骤)、菱形框(表示判断分支)和平行四边形(表示输入/输出)。以K-means聚类算法为例,流程图能直观展示其初始化中心点、计算距离、更新中心点等关键步骤。这些图形组件使复杂算法的逻辑结构清晰可辨,便于理解和交流,是算法设计与分析的重要辅助工具。
2023-01-19 23:43:30
3926
原创 从GBFS到A*算法的数学原理及python实现
通过GBFS得到A*算法,掌握A*算法背后的数学原理和思想。利用寻路问题进一步加深对A*算法的理解,给出python核心代码
2023-01-15 17:11:29
442
原创 【tf学习笔记2】tensorflow2.3张量中None占位符问题-搭建注意力模块SE-Net
tensorflow2.3keras搭建SE-Net遇到问题。 与reshape中的None占位符有关。Failed to convert object of type to Tensor.
2022-12-30 18:23:24
710
原创 【Python基础学习2】官网安装Pytorch GPU版本失败解决流程
安装pytorch出现了许多问题,如:官网安装失败出现failed with initial frozen solve. Retrying with flexible solve,安装GPU却变成CPU等.。结合自己的理解分析以及网络资源,深入安装的底层逻辑,冷静分析逐一解决各个问题。在此撰写技术文档,记录安装过程中各种问题与解决办法,与各位共同学习。
2022-12-27 12:08:56
4736
原创 【Python基础学习1】python、IDLE、pycharm、Anaconda的区别与联系
分别对python、IDLE、pycharm、Anaconda进行了介绍分析,对四者之间的区别和联系进行了梳理和总结。
2022-12-26 21:45:24
5586
2
原创 【tf学习笔记1】 tensorflow2.0+的相关硬件资源调用和设置问题
[tf学习笔记1] tensorflow2.0+的相关硬件资源调用和设置问题
2022-10-18 12:50:01
920
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人