
AIBase
文章平均质量分 84
各种AI算法笔记分享,智能化时代也要笔耕不辍
一只程序猿林
——欢迎热爱人工智能技术的朋友们和我交流!——互联网、物联网设施的基本完善带来海量的数据,GPU、NPU技术的不断升级带来算力的大幅提升,以神经网络为基础的连接主义学派取得AI领域的历史性胜利,带来算法的空前繁荣。可以预见,中国社会必将在未来二十年实现数字化到智能化的全面跃升,第四次科技革命的本质特征是AI将人类从重复的脑力劳动中解放出来,实现更高级的智能。AI for Anything是人类历史的必然。——我正在把自己有限的生命投入到我所热爱的无限发展的AI事业中去!——
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
with torch.no_grad 和 model.eval() 的区别详解
PyTorch中torch.no_grad()和model.eval()是推理阶段常用的两个操作,但功能不同。torch.no_grad()通过禁用梯度计算来节省内存和计算资源,而model.eval()将模型切换为评估模式,主要影响Dropout和BatchNorm层的行为(如关闭Dropout、使用固定统计量)。两者通常配合使用,前者优化计算效率,后者确保模型层表现一致。训练时应使用model.train()并保持梯度计算,推理时则建议同时使用model.eval()和with torch.no_gra原创 2025-07-16 15:18:57 · 730 阅读 · 0 评论 -
PCA降维及降维过程python可视化分析
PCA降维numpy实现,python可视化分析PCA降维实质原创 2023-01-25 23:18:43 · 3576 阅读 · 3 评论 -
卷积和相关辨析
卷积核相关都可以叫滤波操作。在数字图像处理领域,简单来说,滤波就是用一个模版在图像上滑动计算得到新元素构成一幅输出图像或者叫输出特征图。滤波器滑动的时候需要设置一个原点,,故(这里仅仅考虑矩形滤波器,这也是最常用的)形式化如下:设矩形滤波器大小是M×NM2a1N2b1ab∈N。原创 2024-11-28 11:47:04 · 658 阅读 · 0 评论 -
深入理解批量标准化(Batch Normalization)及PyTorch代码验证
本文介绍了深度学习中的批量标准化(BN)技术,分析了其原理和实现方法。BN通过对每层输入进行归一化处理,缓解内部协变量偏移问题,从而加速训练、提高模型稳定性。文章详细阐述了BN的数学公式,并通过PyTorch代码验证了手动计算与内置BN层的一致性。同时总结了BN的主要优势(如加速收敛、提高稳定性)和局限性(计算开销大、对小批量敏感等)。实验表明,BN能有效改善神经网络训练过程,但在特定场景下仍需谨慎使用。原创 2025-07-16 14:27:25 · 1287 阅读 · 0 评论 -
梯度下降算法的数学原理及python实现
从泰勒公式出发,推导GD算法,结合函数拟合问题,彻底弄懂GD算法的本质原创 2023-01-14 14:25:09 · 356 阅读 · 0 评论 -
线性回归及正则化总结,python实现,非sklearn
基于pytorch自动求导实现线性回归,总结实现L1、L2、eElasticNet三种基本正则化,缓解过拟合原创 2023-01-26 12:37:06 · 1183 阅读 · 0 评论 -
朴素贝叶斯的数学原理,完全手推,一针见血
②朴素贝叶斯模型分为:高斯模型(连续)、多项式模型(离散)和贝努利模型(二值),如果分类的特征中有离散和连续两种特征,有两种方法可以解决这个问题。①如果需要分类的事件特征中有新的特征分量,那么使用拉普拉斯平滑技术给对应条件概率的分子分母同时加上一个数,一般是1,称为拉普拉斯平滑系数,作用是避免先验概率连乘时出现。,对于一个新的特征只需要查表计算所有类别的后验概率大小,最大的概率值对应的那个类别即是新特征送入朴素贝叶斯分类器的分类结果。朴素贝叶斯模型是一种生成式机器学习模型,其模型的数学原理是贝叶斯公式。原创 2023-01-28 21:54:32 · 334 阅读 · 0 评论 -
逻辑回归的数学原理与MLP的思想之根
可以说,逻辑回归的思想影响了人工神经网络的发展,将单纯的离散分类问题转换为了求解概率的连续问题,也为后来大名鼎鼎的。但是阶跃函数本身的性质不好处理(如微分),对于计算机来说并没有太大的实际意义,因此研究者们找到了sigmoid函数来替代阶跃函数。如今,具有惊人效果的神经网络中必不可少的激活函数机制,其根在逻辑回归,可见科学的大厦就是这样一步一步建成的。对于连续的问题使用线性回归和多项式回归是有效的,但是对于数据特征呈现出较强的离散性时,则必须使用逻辑回归。回归,可以处理多类分类问题。原创 2023-01-28 12:33:04 · 382 阅读 · 0 评论 -
从GBFS到A*算法的数学原理及python实现
通过GBFS得到A*算法,掌握A*算法背后的数学原理和思想。利用寻路问题进一步加深对A*算法的理解,给出python核心代码原创 2023-01-15 17:11:29 · 440 阅读 · 0 评论