SLAM学习笔记

本文详细介绍了三维空间中刚体运动的基本概念,包括旋转矩阵的定义及其性质,并阐述了如何利用旋转矩阵和平移向量来进行坐标系间的欧氏变换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ch3 三维空间刚体运动

3.1 旋转矩阵

3.1.1 点和向量,坐标系
  1. 定义坐标系后,向量a可由如下坐标表示
    在这里插入图片描述
  2. 向量之间的运算

(1)加减法:
(2)内积:向量间的投影关系
在这里插入图片描述
(3)外积:(在三维图像中很重要)
在这里插入图片描述
外积只对三维向量存在定义,我们还能用外积表示向量的旋转。

3.1.2 坐标系间的欧氏变换

与向量间的旋转类似,我们同样可以描述两个坐标系之间的旋转关系,再加上平移,统称为坐标系之间的变换关系。
1. 欧式变换的引入
如何计算同一个向量在不同坐标系里的坐标在机器人的运动过程中,常见的做法是设定一个惯性坐标系(或者叫世界坐标系),它是固定不动的,例如下图中的Xw ,Yw ,Zw定义的坐标系。但是机器人坐标系会随着机器人的运动而改变,每个时刻都有新的坐标系,例如xC,yC,zC定义的坐标系。
在这里插入图片描述
相机视野中某个向量p,它的坐标为pc,而从世界坐标系下看,它的坐标pw。这两个坐标之间是如何转换的呢?这个转换关系由一个矩阵T来描述,这种变换称为欧氏变换,一个欧氏变换由一个旋转和一个平移两部分组成。
2. 旋转
首先来考虑旋转。我们设某个单位正交基(e1,e2,e3) 经过一次旋转,变成了 (e′1,e′2,e′3)。那么,对于同一个向量 a(注意该向量并没有随着坐标系的旋转而发生运动),它在两个坐标系下的坐标为 [a1, a2, a3]T 和 [a′1, a′2, a′3]T。根据坐标的定义,有:
在这里插入图片描述
为了描述两个坐标之间的关系,我们对上面等式左右同时左乘
在这里插入图片描述
那么左边的系数变成了单位矩阵,所以:
在这里插入图片描述

把中间的阵拿出来,定义成一个矩阵R。这个矩阵由两组基之间的内积组成,刻画了旋转前后同一个向量的坐标变换关系。只要旋转是一样的,那么这个矩阵也是一样的。可以说,矩阵R描述了旋转本身,因此它又称为旋转矩阵

旋转矩阵的性质
①正交矩阵
②行列式为1
反之,满足这两个条件的也可以称为旋转矩阵。

我们可以把旋转矩阵的集合定义如下
在这里插入图片描述
SO(n) 是特殊正交群(Special Orthogonal Group)的意思。这个集合由n维空间的旋转矩阵组成,特别的,SO(3)就是三维空间的旋转了。通过旋转矩阵,我们可以直接谈论两个坐标系之间的旋转变换,而不用再从基开始谈起了。
由于旋转矩阵为正交阵,它的逆(即转置)描述了一个相反的旋转。按照上面的定义方式,有:
在这里插入图片描述
3.平移
在欧氏变换中,除了旋转之外还有一个平移。考虑世界坐标系中的向量 a,经过一次旋转(用R描述)和一次平移t后,得到了a′,那么把旋转和平移合到一起,有:
在这里插入图片描述
其中,t称为平移向量。相比于旋转,平移部分只需把这个平移量加到旋转之后的坐标上,显得非常简洁。通过上式,我们用一个旋转矩阵R和一个平移向量t完整地描述了一个欧氏空间的坐标变换关系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值