概率导论-马尔可夫相关

本文介绍了概率论中的马尔可夫不等式和切比雪夫不等式,阐述了如何利用随机变量的均值和方差分析事件概率。马尔可夫不等式给出了随机变量大于等于某个正数的概率上限,而切比雪夫不等式则在随机变量方差较小时限制了它偏离均值的概率。此外,还讨论了离散时间马尔科夫链的基本概念,包括状态转移概率和稳态概率。

马尔可夫和切比雪夫不等式

使用情景:使用随机变量的均值与方差去分析事件的概率,随机变量X的均值与方差易计算,但分布不清楚或不易计算--(For概率,均值方差分布×

随机变量的均值与方差计算:

X1,X2相互独立

E(X1+X2)=E(X1)+E(X2) 

E(X1X2)=E(X1)E(X2)

Var(X1+X2)=Var(X1)+Var(X2)

Var(X)=E[X^2]-(E[X])^2

E(aX+b)=aE(X)+b

Var(aX+b)=a^2Var(X)

马尔可夫不等式

设随机变量X只取非负值,则对任意a>0,P(X≥a)≤E[X]/a

特点:马尔可夫不等式给出的概率与真实概率差距非常大

切比雪夫不等式

设随机变量X均值为\mu,方差为\delta ^2,则对任意c>0,P(|X-\mu|≥c)≤

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值