rk3588部署yolov8视频目标检测教程

目录

1. 环境配置

1.1 训练和导出onnx环境(电脑端执行)

1.2 导出rknn环境(电脑端执行)

2. 训练部分(电脑端执行)

2.1 训练脚本(电脑端执行)

3. onnx转rknn(电脑端执行)


1. 环境配置

1.1 训练和导出onnx环境(电脑端执行)

#使用conda创建一个python环境
conda create -n torch python=3.9
 
#激活环境
conda activate torch
 
#安装yolov8
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple

1.2 导出rknn环境(电脑端执行)

安装toolkit2-1.5.2

下载链接:

链接:百度网盘 请输入提取码

提取码:abcf 

下载后对应的文件为 onxx2rknn

下载后,创建一个

【资源介绍】 基于RK3588部署yolov5s模型源码(实时摄像头检测)+部署说明文档.zip 该项目是个人毕设项目,答辩评审分达到95分,代码都经过调试测试,确保可以运行!欢迎下载使用,可用于小白学习、进阶。 该资源主要针对计算机、通信、人工智能、自动化等相关专业的学生、老师或从业者下载使用,亦可作为期末课程设计、课程大作业、毕业设计等。 项目整体具有较高的学习借鉴价值!基础能力强的可以在此基础上修改调整,以实现不同的功能。 yolov5模型(.pt)在RK3588(S)上的部署(实时摄像头检测) - 所需: - 安装了Ubuntu20系统的RK3588 - 安装了Ubuntu18的电脑或者虚拟机 <details> <summary>一、yolov5 PT模型获取</summary> [Anaconda教程](https://blog.csdn.net/qq_25033587/article/details/89377259)\ [YOLOv5教程](https://zhuanlan.zhihu.com/p/501798155)\ 经过上面两个教程之后,你应该获取了自己的`best.pt`文件 </details> <details> <summary>二、PT模型转onnx模型</summary> - 将`models/yolo.py`文件中的`class`类下的`forward`函数由: ```python def forward(self, x): z = [] # inference output for i in range(self.nl): x[i] = self.m[i](x[i]) # conv bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() if not self.training: # inference if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]: self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i) if isinstance(self, Segment): # (boxes + masks) xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4) xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i] # xy wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i] # wh y = torch.cat((xy, wh, conf.sigmoid(), mask), 4) else: # Detect (boxes only) xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4) xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh y = torch.cat((xy, wh, conf), 4) z.append(y.view(bs, self.na * nx * ny, self.no)) return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x) ``` 改为: ```python def forward(self, x): z = [] # inference
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

今夕是何年,

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值