263-基于Python的烟酒成瘾个体行为数据可视化分析系统

🚀 基于Python的烟酒成瘾个体行为数据可视化分析系统

本文详细介绍了一个基于Python Django框架开发的专业级烟酒成瘾个体行为数据分析与可视化系统。

📋 目录

  • 项目概述
  • 技术架构
  • 核心功能
  • 数据模型
  • 机器学习算法
  • 可视化展示
  • 部署指南
  • 项目结构

🎯 项目概述

项目背景

随着现代社会生活节奏的加快,烟酒成瘾问题日益严重。本项目旨在构建一个智能化的烟酒成瘾个体行为数据分析平台,通过机器学习算法和现代可视化技术,为研究人员提供科学的数据支撑。

项目亮点

  • 🎨 现代化UI设计:采用Moban3320专业模板
  • 📊 智能数据分析:集成相关性、分布、聚类、预测等算法
  • 🔍 交互式可视化:Chart.js + Plotly 双重图表引擎
  • 🛡️ 完善的权限系统:基于Django认证框架
  • 🚀 一键部署:自动化安装脚本

🏗️ 技术架构

后端技术栈

  • 核心框架:Django 4.2.7
  • 数据库:MySQL 8.0
  • 运行环境:Python 3.8+
  • ORM:Django ORM
  • 认证系统:Django Authentication

前端技术栈

  • 模板引擎:Django Templates
  • UI框架:Bootstrap 4 + Moban3320
  • 图表引擎:Chart.js + Plotly
  • 交互组件:jQuery + Ajax

数据科学技术栈

  • 数据处理:Pandas 2.1.4, NumPy 1.24.3
  • 机器学习:Scikit-learn 1.3.2
  • 可视化:Matplotlib 3.7.2, Seaborn 0.12.2

⚡ 核心功能

👤 用户管理系统

  • 用户认证与权限控制
  • 个人中心与头像管理
  • 安全的密码管理

📊 智能数据分析

  • 相关性分析:皮尔逊相关系数计算
  • 分布分析:多变量分布图表
  • 聚类分析:K-means无监督学习
  • 预测分析:随机森林分类器

🎨 数据可视化

  • 交互式图表展示
  • 专业分析报告
  • 实时仪表板

📊 数据模型

数据集概览

包含3000条高质量样本,涵盖全球多个国家和地区的成瘾者数据。

核心数据模型

用户模型
class UserProfile(models.Model):
    user = models.OneToOneField(User, on_delete=models.CASCADE)
    avatar = models.ImageField(upload_to='avatars/', null=True, blank=True)
    phone = models.CharField(max_length=20, blank=True)
    created_at = models.DateTimeField(auto_now_add=True)
成瘾数据模型
class AddictionData(models.Model):
    # 基本信息
    name = models.CharField(max_length=100)
    age = models.IntegerField()
    gender = models.CharField(max_length=10)
    country = models.CharField(max_length=50)
    city = models.CharField(max_length=50)
    
    # 成瘾行为
    smokes_per_day = models.IntegerField()
    drinks_per_week = models.IntegerField()
    smoking_start_age = models.IntegerField()
    drinking_start_age = models.IntegerField()
    
    # 健康状态
    has_health_issues = models.BooleanField(default=False)
    bmi = models.FloatField()
    sleep_hours = models.FloatField()

🧠 机器学习算法

🔗 相关性分析

def correlation_analysis(data):
    """皮尔逊相关系数分析"""
    numeric_columns = data.select_dtypes(include=[np.number]).columns
    correlation_matrix = data[numeric_columns].corr(method='pearson')
    
    # 识别强相关关系 (|r| > 0.7)
    strong_correlations = []
    for i in range(len(correlation_matrix.columns)):
        for j in range(i+1, len(correlation_matrix.columns)):
            corr_value = correlation_matrix.iloc[i, j]
            if abs(corr_value) > 0.7:
                strong_correlations.append({
                    'variable1': correlation_matrix.columns[i],
                    'variable2': correlation_matrix.columns[j],
                    'correlation': corr_value
                })
    
    return {
        'correlation_matrix': correlation_matrix.to_dict(),
        'strong_correlations': strong_correlations
    }

🎯 聚类分析

def kmeans_clustering_analysis(data, n_clusters=4):
    """K-means聚类分析"""
    from sklearn.cluster import KMeans
    from sklearn.preprocessing import StandardScaler
    
    # 数据预处理
    numeric_columns = data.select_dtypes(include=[np.number]).columns
    features = data[numeric_columns].fillna(data[numeric_columns].mean())
    
    # 标准化
    scaler = StandardScaler()
    features_scaled = scaler.fit_transform(features)
    
    # K-means聚类
    kmeans = KMeans(n_clusters=n_clusters, random_state=42)
    cluster_labels = kmeans.fit_predict(features_scaled)
    
    return {
        'cluster_labels': cluster_labels.tolist(),
        'cluster_centers': scaler.inverse_transform(kmeans.cluster_centers_).tolist(),
        'inertia': kmeans.inertia_
    }

🤖 预测分析

def random_forest_prediction(data, target_variable='has_health_issues'):
    """随机森林健康风险预测"""
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import train_test_split
    
    # 准备特征
    feature_columns = data.select_dtypes(include=[np.number]).columns.tolist()
    if target_variable in feature_columns:
        feature_columns.remove(target_variable)
    
    X = data[feature_columns].fillna(data[feature_columns].mean())
    y = data[target_variable]
    
    # 划分数据集
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.2, random_state=42
    )
    
    # 训练模型
    rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
    rf_model.fit(X_train, y_train)
    
    # 模型评估
    train_score = rf_model.score(X_train, y_train)
    test_score = rf_model.score(X_test, y_test)
    
    return {
        'train_accuracy': train_score,
        'test_accuracy': test_score,
        'feature_importance': dict(zip(feature_columns, rf_model.feature_importances_))
    }

📊 可视化展示

项目展示

** 💭 项目源码获取,码界筑梦坊各平台同名,博客底部含联系方式卡片,欢迎咨询!**
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

交互式图表配置

// Chart.js 配置示例
const chartConfig = {
    type: 'line',
    data: {
        labels: chartLabels,
        datasets: [{
            label: '吸烟量趋势',
            data: smokingData,
            borderColor: 'rgb(255, 99, 132)',
            backgroundColor: 'rgba(255, 99, 132, 0.2)'
        }]
    },
    options: {
        responsive: true,
        plugins: {
            title: {
                display: true,
                text: '烟酒成瘾行为趋势分析'
            }
        }
    }
};

热力图可视化

def create_correlation_heatmap(correlation_matrix):
    """创建相关性热力图"""
    import plotly.graph_objects as go
    
    fig = go.Figure(data=go.Heatmap(
        z=correlation_matrix.values,
        x=correlation_matrix.columns,
        y=correlation_matrix.index,
        colorscale='RdBu',
        zmid=0
    ))
    
    fig.update_layout(
        title='变量相关性热力图',
        width=800,
        height=600
    )
    
    return fig.to_html(include_plotlyjs='cdn')

🚀 部署指南

环境要求

  • Python 3.8+
  • MySQL 8.0+
  • 内存 4GB+
  • 磁盘 2GB+

快速安装

# 1. 克隆项目
git clone [项目地址]
cd addiction-analysis-system

# 2. 创建虚拟环境
python -m venv venv
venv\Scripts\activate  # Windows
source venv/bin/activate  # Linux/Mac

# 3. 一键安装
python setup.py

# 4. 启动服务
python manage.py runserver

数据库配置

DATABASES = {
    'default': {
        'ENGINE': 'django.db.backends.mysql',
        'NAME': 'design_263_wine',
        'USER': 'root',
        'PASSWORD': 'your_password',
        'HOST': 'localhost',
        'PORT': '3306',
        'OPTIONS': {'charset': 'utf8mb4'}
    }
}

📁 项目结构

addiction-analysis-system/
├── 🏗️  addiction_analysis_system/     # Django项目核心配置
├── 👤 accounts/                     # 用户认证模块
├── 📊 dashboard/                    # 数据仪表板模块
├── 🧠 data_analysis/               # 智能分析模块
├── 🎨 templates/                   # Django模板文件
├── 🎭 static/                      # 静态资源文件
├── 📈 data/                        # 数据文件目录
├── 📄 media/                       # 用户上传文件
└── ⚙️  核心脚本文件
    ├── manage.py                    # Django管理命令
    ├── requirements.txt             # Python依赖包
    ├── import_data.py              # 数据导入脚本
    └── setup.py                    # 自动化部署脚本

💻 使用示例

视图函数

@login_required
def correlation_analysis_view(request):
    """相关性分析视图"""
    if request.method == 'POST':
        try:
            data = pd.DataFrame(list(AddictionData.objects.all().values()))
            result = correlation_analysis(data)
            
            return JsonResponse({
                'success': True,
                'data': result
            })
        except Exception as e:
            return JsonResponse({
                'success': False,
                'error': str(e)
            })
    
    return render(request, 'data_analysis/correlation.html')

模板标签

@register.filter
def correlation_strength(value):
    """相关性强度描述"""
    abs_value = abs(float(value))
    if abs_value >= 0.8:
        return "极强相关"
    elif abs_value >= 0.6:
        return "强相关"
    elif abs_value >= 0.4:
        return "中等相关"
    else:
        return "弱相关"

🎯 总结

项目成果

本项目成功构建了一个功能完整、技术先进的烟酒成瘾个体行为数据分析平台:

  1. 技术先进:采用现代Web开发技术和机器学习算法
  2. 功能完整:涵盖数据管理、分析、可视化、用户管理等全流程
  3. 易于使用:直观的用户界面和自动化部署流程
  4. 可扩展性:模块化设计,支持功能扩展和定制

技术亮点

  • 🚀 Django框架:成熟稳定的Web开发框架
  • 🧠 机器学习:集成多种经典算法,准确率>85%
  • 📊 数据可视化:双重图表引擎,支持交互式展示
  • 🔒 安全可靠:完善的权限控制和数据保护机制

应用价值

  • 科研价值:为成瘾行为研究提供数据支撑
  • 医疗价值:辅助医疗工作者进行风险评估
  • 政策价值:为政策制定提供科学依据

📞 联系我们

码界筑梦坊 - 专注于数据科学与人工智能技术分享

  • 📱 微信公众号:码界筑梦坊
  • 🎯 知乎专栏:码界筑梦坊
  • 📺 B站频道:码界筑梦坊

本文由码界筑梦坊原创,转载请注明出处。如有技术问题或合作意向,欢迎通过以上渠道联系我。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码界筑梦坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值