线性回归——预测保险费用操作手册(5.3学习)

#导入库  任务1——加载数据及进行预处理
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
df=pd.read_csv('./data/insurance.csv')
df.head()

df.shape

df.info()

2.数据的清洗和转换

#将性别'female'——0;'male'-1替换
df['sex'].unique()

df['sex'].replace({'female':0,'male':1},inplace=True)
df.head()

#df['smoker']中'yes'——1,'no'——0替换
df['smoker'].unique()
df['smoker'].replace({'yes':1,'no':0},inplace=True)
df.head()

df['region']中'southwest’,'southeast','northwest','northeast'分别对应1、2、3、4数据的清洗和转换

df['region'].unique()

dict_region={'southwest':1,'southeast':2,'northwest':3,'northeast':4}

df['region']=df['region'].map(dict_region)#map可以接收字典
df.head()
#归一化处理数据标准化
from sklearn.preprocessing import MinMaxScaler

scaler=MinMaxScaler()
scaler.fit(df)#确定转换特征值范围 min max

df1=scaler.transform(df)#转换器 x-min  /   (max-min)
df1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值