机器学习与数据挖掘-实验八

本文详细介绍了如何通过编程实现k均值算法,对比了使用3组不同k值(如3、4、5)和3组随机初始中心点在西瓜数据集上的实验结果。讨论了合适的初始中心点对算法性能的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

编程实现k均值算法

编码实现k均值算法,设置三组不同的k值、三组不同的初始中心点,在西瓜数据集4.0上进行实验比较,并讨论什么样的初始中心有利于取得好结果。

k均值算法十分重要,在期末考试中可能会出一道大题来计算K均值,还是希望大家掌握。其实计算思路并不难,首先先为每个类初始化一个值,计算需要划分的数据到初始值的距离,距离近的划分到对应的类中,之后再更新初始值,继续计算距离,直到当前的结果划分和上一步的结果划分一样便停止下去。

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import scipy.io

def loaddata():
    data = np.loadtxt('watermelon_4.txt',delimiter=',')
    return data

X = loaddata()
plt.scatter(X[:, 0], X[:, 1], s=20)
#随机初始化中心点
def kMeansInitCentroids(X, k):
    #从X的数据中随机取k个作为中心点
    # 补充随机初始化中心点的代码
    m,n=X.shape
    centroids=np.zeros((k,n))
    idx=np.random.randint(0,m,k)
    for i in range(k):
        centroids[i,:]=X[idx[i],:]
    return centroids

#计算数据点到中心点的距离,并判断该数据点属于哪个中心点
def findClosestCentroids(X, centroids):
    #idx中数据表明对应X的数据是属于哪一个中心点的
    idx = np.zeros(len(X)).reshape( X.shape[0],-1)
    for i in range(len(X)):
        #补充计算数据点到中心点的距离,并判断该数据点所属中心点的代码
        min_dist=1000000
        for j in range (centroids.shape[0]):
            dist=np.sum((X[i,:]-centroids[j,:])**2)
            if(dist<min_dist):
                min_dist = dist
                idx[i]=j
    return idx

#重新计算中心点位置
def computeCentroids(X, idx):
    k = set(np.ravel(idx).tolist()) #找到所有聚类中心索引
    k = list(k)
    centroids = np.ndarray((len(k),X.shape[1]))
    for i in range(len(k)):
        #选择数据X中类别为k[i]的数据
        data = X[np.where(idx==k[i])[0]]
        #重新计算聚类中心
        centroids[i] = np.sum(data,axis=0)/len(data)
    return centroids

def k_means(X, k, max_iters):
    initial_centroids = kMeansInitCentroids(X,k)
    #补充k均值代码
    idx=np.zeros(X.shape)
    centroids=initial_centroids
    for i in range(max_iters):
        idx = findClosestCentroids(X,centroids)
        centroids=computeCentroids(X,idx)
    return idx,centroids

idx,centroids = k_means(X, 3, 8)
idx=idx.reshape(1,-1)
print(idx)
print(centroids)

cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
plt.scatter(X[:, 0], X[:, 1], c=np.ravel(idx), cmap=cm_dark, s=20)
plt.scatter(centroids[:, 0], centroids[:, 1], c=np.arange(len(centroids)), cmap=cm_dark, marker='*', s=500)
plt.show()

机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。它专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。机器学习是人工智能的核心,是使计算机具有智能的根本途径。 随着统计学的发展,统计学习在机器学习中占据了重要地位,支持向量机(SVM)、决策树和随机森林等算法的提出和发展,使得机器学习能够更好地处理分类、回归和聚类等任务。进入21世纪,深度学习成为机器学习领域的重要突破,采用多层神经网络模型,通过大量数据和强大的计算能力来训练模型,在计算机视觉、自然语言处理和语音识别等领域取得了显著的成果。 机器学习算法在各个领域都有广泛的应用,包括医疗保健、金融、零售和电子商务、智能交通、生产制造等。例如,在医疗领域,机器学习技术可以帮助医生识别医疗影像,辅助诊断疾病,预测病情发展趋势,为患者提供个性化的治疗方案。在金融领域,机器学习模型可以分析金融数据,识别潜在风险,预测股票市场的走势等。 未来,随着传感器技术和计算能力的提升,机器学习将在自动驾驶、智能家居等领域发挥更大的作用。同时,随着物联网技术的普及,机器学习将助力智能家居设备实现更加智能化和个性化的功能。在工业制造领域,机器学习也将实现广泛应用,如智能制造、工艺优化和质量控制等。 总之,机器学习是一门具有广阔应用前景和深远影响的学科,它将持续推动人工智能技术的发展,为人类社会的进步做出重要贡献。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值