编程实现k均值算法
编码实现k均值算法,设置三组不同的k值、三组不同的初始中心点,在西瓜数据集4.0上进行实验比较,并讨论什么样的初始中心有利于取得好结果。
k均值算法十分重要,在期末考试中可能会出一道大题来计算K均值,还是希望大家掌握。其实计算思路并不难,首先先为每个类初始化一个值,计算需要划分的数据到初始值的距离,距离近的划分到对应的类中,之后再更新初始值,继续计算距离,直到当前的结果划分和上一步的结果划分一样便停止下去。
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import scipy.io
def loaddata():
data = np.loadtxt('watermelon_4.txt',delimiter=',')
return data
X = loaddata()
plt.scatter(X[:, 0], X[:, 1], s=20)
#随机初始化中心点
def kMeansInitCentroids(X, k):
#从X的数据中随机取k个作为中心点
# 补充随机初始化中心点的代码
m,n=X.shape
centroids=np.zeros((k,n))
idx=np.random.randint(0,m,k)
for i in range(k):
centroids[i,:]=X[idx[i],:]
return centroids
#计算数据点到中心点的距离,并判断该数据点属于哪个中心点
def findClosestCentroids(X, centroids):
#idx中数据表明对应X的数据是属于哪一个中心点的
idx = np.zeros(len(X)).reshape( X.shape[0],-1)
for i in range(len(X)):
#补充计算数据点到中心点的距离,并判断该数据点所属中心点的代码
min_dist=1000000
for j in range (centroids.shape[0]):
dist=np.sum((X[i,:]-centroids[j,:])**2)
if(dist<min_dist):
min_dist = dist
idx[i]=j
return idx
#重新计算中心点位置
def computeCentroids(X, idx):
k = set(np.ravel(idx).tolist()) #找到所有聚类中心索引
k = list(k)
centroids = np.ndarray((len(k),X.shape[1]))
for i in range(len(k)):
#选择数据X中类别为k[i]的数据
data = X[np.where(idx==k[i])[0]]
#重新计算聚类中心
centroids[i] = np.sum(data,axis=0)/len(data)
return centroids
def k_means(X, k, max_iters):
initial_centroids = kMeansInitCentroids(X,k)
#补充k均值代码
idx=np.zeros(X.shape)
centroids=initial_centroids
for i in range(max_iters):
idx = findClosestCentroids(X,centroids)
centroids=computeCentroids(X,idx)
return idx,centroids
idx,centroids = k_means(X, 3, 8)
idx=idx.reshape(1,-1)
print(idx)
print(centroids)
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
plt.scatter(X[:, 0], X[:, 1], c=np.ravel(idx), cmap=cm_dark, s=20)
plt.scatter(centroids[:, 0], centroids[:, 1], c=np.arange(len(centroids)), cmap=cm_dark, marker='*', s=500)
plt.show()