Bi-shoe and Phi-shoe——欧拉函数

这篇博客介绍了如何使用欧拉函数的概念解决一个问题:给定一组数字,找到每个数对应的最小互质数,其欧拉函数值大于等于原数。通过编程实现打表并计算这些最小值的和。涉及到的算法包括欧拉函数的计算和动态规划的思想。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🚪:Bi-shoe Phi-shoe 

欧拉函数:小于等于n的数中与n互质的个数。

打表模板:

void ol() {
	for(int i=2; i<N; i++) {
		if(!a[i]) {
			for(int j=i; j<N; j+=i) {
				if(!a[j])a[j]=j;
				a[j]=a[j]/i*(i-1);
			}
		}
	}
}

给定一个数x,找到某个最小的数的欧拉函数值大于等于x即可,最后累加即为答案。

#include<iostream>
#include<cmath>
#include<algorithm>
const int N=1e6+10;
using namespace std;

int a[N];
void ol() {
	for(int i=2; i<N; i++) {
		if(!a[i])
			for(int j=i; j<N; j+=i) {
				if(!a[j])a[j]=j;
				a[j]=a[j]/i*(i-1);
			}
	}
}
int main() {
	ol();
	int t;
	cin>>t;
	int cc=1;
	while(t--) {
		int n;
		cin>>n;
		long long sum=0;
		while(n--) {
			int x;
			cin>>x;
			int c=x;
			while(a[x]<c)x++;
			sum+=x;
		}
		printf("Case %d: %lld Xukha\n",cc++,sum);
	}
}

给出n个数字的序列a[],对于每个数字ai找到一个欧拉函数值大于等于ai的数bi,求找到的所有数bi的最小值之和sum(此处规定欧拉函数1的值为0)

Input

有T(T<=100)组数据,每组数据有两行,第一行给定n(n<=10000) 第二行给出长度为n的序列a[],ai的取值范围为[1,1000000]

Output

输出一个数sum

Sample Input

3

5   1 2 3 4 5

6   10 11 12 13 14 15

2   1 1

Sample Output

Case 1: 22 Xukha

Case 2: 88 Xukha

Case 3: 4 Xukha

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值