【LeetCode 热题 100】206. 反转链表——(解法二)指针翻转

Problem: 206. 反转链表
题目:给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。

【LeetCode 热题 100】206. 反转链表——(解法一)值翻转

整体思路

这段代码旨在解决 “反转单链表” 的问题。与上一个通过修改节点值的方法不同,此版本采用的是迭代法,通过改变节点的 next 指针指向来实现真正的链表结构反转。这是解决此问题的标准、高效且最被认可的方法。

算法的核心思想是:在遍历链表的过程中,逐个地将每个节点的 next 指针“反向”,指向其前一个节点。

  1. 指针的定义与初始化

    • 算法使用了两个关键指针来追踪状态:
      • ListNode pre = null;: pre 指针用于存储当前节点 cur 的前一个节点。在反转后,cur 应该指向 pre。初始时,头节点的前一个节点是 null,所以 pre 初始化为 null。这个 null 将成为反转后新链表的尾部。
      • ListNode cur = head;: cur 指针指向当前正在处理的节点。它从头节点 head 开始。
  2. 迭代与指针反转

    • 算法使用一个 while (cur != null) 循环来遍历整个链表,直到所有节点都被处理完毕。
    • 在循环的每一步,针对当前节点 cur,执行以下“四步曲”:
      a. 保存下一个节点ListNode nxt = cur.next;
      • 这是至关重要的一步。在我们将 cur.next 的指向改变之前,必须先用一个临时指针 nxtcur 原来的下一个节点保存起来。否则,一旦 cur.next 被修改,我们就会丢失通往链表其余部分的路径。
        b. 反转指针cur.next = pre;
      • 这是核心的反转操作。将当前节点 curnext 指针指向其前一个节点 pre
        c. 更新 pre 指针pre = cur;
      • 完成 cur 的反转后,对于下一个节点(即刚才保存的 nxt),cur 就变成了它的“前一个节点”。所以,将 pre 指针更新为 cur,为下一次迭代做准备。
        d. 更新 cur 指针cur = nxt;
      • cur 指针移动到下一个要处理的节点,即之前保存的 nxt
  3. 返回结果

    • while 循环结束时,cur 会变为 null,意味着已经处理完了所有节点。
    • 此时,pre 指针恰好指向了原始链表的最后一个节点,而这个节点现在是反转后新链表的头节点。因此,返回 pre

这个过程就像是将链表的节点逐个从旧链表上“摘下”,然后“头插”到新链表的前面,最终完成整个链表的反转。

完整代码

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode() {}
 *     ListNode(int val) { this.val = val; }
 *     ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {
    /**
     * 反转一个单链表。(迭代法)
     * @param head 原始链表的头节点
     * @return 反转后新链表的头节点
     */
    public ListNode reverseList(ListNode head) {
        // pre: 指向当前节点 cur 的前一个节点。反转后,cur.next 应指向 pre。
        // 初始化为 null,因为原始头节点反转后将指向 null。
        ListNode pre = null;
        // cur: 指向当前正在处理的节点。
        ListNode cur = head;
        
        // 遍历整个链表,直到 cur 为 null
        while (cur != null) {
            // 1. 临时保存当前节点的下一个节点,以防断链
            ListNode nxt = cur.next;
            
            // 2. 核心:反转指针,将当前节点的 next 指向前一个节点
            cur.next = pre;
            
            // 3. 更新 pre 指针,为下一次循环做准备。pre 向前移动到 cur 的位置。
            pre = cur;
            
            // 4. 更新 cur 指针,处理下一个节点。cur 向前移动到 nxt 的位置。
            cur = nxt;
        }
        
        // 循环结束后,pre 指向的就是原链表的最后一个节点,即新链表的头节点。
        return pre;
    }
}

时空复杂度

时间复杂度:O(N)

  1. 循环:算法的核心是一个 while 循环,它遍历链表中的每一个节点一次。如果链表有 N 个节点,这个循环将执行 N 次。
  2. 循环内部操作:在循环的每一次迭代中,执行的都是指针的赋值操作,这些都是 O(1) 的。

综合分析
算法由 N 次 O(1) 的操作组成。因此,总的时间复杂度是 N * O(1) = O(N)

空间复杂度:O(1)

  1. 主要存储开销:该算法没有创建任何与输入规模 N 成比例的新的数据结构(如数组或哈希表)。
  2. 辅助变量:只使用了 pre, cur, nxt 等几个指针变量来存储节点引用。这些变量的数量是固定的,与链表长度无关。

综合分析
算法所需的额外辅助空间是常数级别的。因此,其空间复杂度为 O(1)。这是一个空间效率最优的原地算法。

参考灵神

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xumistore

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值