Spark之RDD内核原理,MR的原理计算回顾,RDD的洗牌(shuffle)过程,RDD优化之避免shuffle过程

  • 学习:知识的初次邂逅
  • 复习:知识的温故知新
  • 练习:知识的实践应用

目录

一,MR的shuffle回顾

1,Map 阶段:

2,Shuffle 阶段:

3,Reduce 阶段:

二,spark的shuffle介绍

 1,两种洗牌的方式

2,spark的计算是要尽量避免进入shuffle计算

三,并行度

1,资源并行度

 2,数据并行度

一,MR的shuffle回顾

1,Map 阶段:

  • 在 MapReduce 中,Map 阶段的任务是处理输入数据,并将数据转换为键值对的形式。每个 Map 任务会处理一部分输入数据,并生成一系列中间键值对。
  • 例如,对于文本数据的处理,Map 任务可能会将每行文本拆分为单词,并以单词为键,出现次数为值生成键值对。

2,Shuffle 阶段:

  • Shuffle 阶段是 MapReduce 中连接 Map 阶段和 Reduce 阶段的重要环节。在这个阶段,中间键值对会根据键进行分区、排序和分组,然后被发送到相应的 Reduce 任务进行处理。
  • 分区:Map 任务生成的中间键值对会根据键的哈希值被分配到不同的分区中。每个分区对应一个 Reduce 任务。
  • 排序:在每个分区内,中间键值对会按照键进行排序。这样可以确保相同键的键值对被分配到同一个 Reduce 任务中,并且在 Reduce 任务中可以按照键的顺序进行处理。
  • 分组:排序后的中间键值对会被分组,相同键的键值对会被放在一起。这样可以方便 Reduce 任务对相同键的键值对进行聚合操作。
  • 数据传输:经过分区、排序和分组后的中间键值对会被发送到相应的 Reduce 任务所在的节点上。这个过程通常涉及网络传输,因此可能会成为性能瓶颈。

3,Reduce 阶段:

  • Reduce 阶段的任务是处理 Shuffle 阶段发送过来的中间键值对,并生成最终的输出结果。
  • Reduce 任务会对相同键的键值对进行聚合操作,例如求和、求平均值等。然后,将结果写入到输出文件中。

二,spark的shuffle介绍

spark中也有shuffle

当执行宽依赖的算子,就会进行shuffle洗牌阶段

也就是把RDD的数据传递给下一个RDD,进行数据交换

无论是MR还是spark,shuffle的本质都是传递交换数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值