文章目录
一、绪论
1.1 相关概念
- 数据:数据是信息的载体,所有能被输入到计算机中,且能被计算机处理的符号的集合。如图片、身份信息等。
- 数据元素和数据项:数据元素是数据的基本单位。数据项是构成数据元素的最小单位,一个数据集元素可有多个数据项。如:每个学生信息就是数据元素,而学生信息中包含的姓名、年龄等信息就是数据项。
- 数据对象:具有相同性质的数据元素的集合,是数据的一个子集。如:所有学生的信息可以作为一个数据对象。
- 数据类型:一组值的集合和定义在该集合上的操作的总和。其中有原子类型(不可再分割)、结构类型(多个原子类型值的集合)、抽象数据类型。
- 数据结构:相互之间存在一种或多种特定关系的数据元素的集合。如:在学生表中,张三拍在李四的上面,这样有相互关系的数据集合表可称为结构。
- 数据:该表就是数据;
- 数据元素:每个学生的信息就是数据元素,即蓝框所示部分。每行为一个数据元素,其可由多个数据项组成,数据项不可再分。
- 数据项:如红框所示。
- 数据对象:如黄框所示,所有学生的信息可作为数据对象;
- 数据类型:如图中年龄为int类型。
1.2 数据结构三要素
- 逻辑结构
- 线性结构:线性表、栈和队列、数组、串
- 非线性结构:集合、树、图
- 物理结构(存储结构)
-
顺序存储(逻辑相邻,实际存储位置也相邻)
-
链式存储(逻辑相邻,物理不相邻)
-
索引存储(利用附加索引表):内存中不仅仅要存放每一个数据元素,还要建立一张索引表,其中有多个索引项,每个索引项包括关键字、关键字对应的地址。
-
散列存储(哈希存储)
-
- 数据的运算
1.3 相关习题
顺序表、链表和有序表:
- 顺序表和链表是根据线性表的存储结构(顺序或链式)来划分的概念;
- 有序表式根据线性表的数据元素的数值大小来划分的概念。
1.4 复杂度
1.4.1 时间复杂度
-
常数阶:与问题规模的大小无关,执行时间恒定的算法,O(1)时间复杂度。
-
线性阶:要确定某个算法的阶次,需要确定某个特定语句运行的次数。因此,要分析算法的时间复杂度,关键是分析循环结构的某个特定语句运行情况。下图,循环的时间复杂度为O(n),因为循环体的代码必须要执行n次。
-
对数阶
-
平方阶
推导时间复杂度时:
- 当运行时间只有常数时,用1代替;
- 在得到的运行次数函数中,只【保留最高阶】,且【除去最高阶项中相乘的系数】。
1.4.2 复杂度相关习题
- 算法执行过程中,所需要的存储空间被称为算法的空间复杂度;
- 算法的时间复杂度取决于问题规模和待处理数据的初态;
二、线性表
2.1 概念
- 前驱元素:若A元素在B元素前面,则称A为B的前驱;
- 后继元素:若B元素在A元素后面,则称B为A的后继;
- 特征:数据元素之间只有一对一的关系;
- 头结点:第一个数据元素没有前驱;
- 尾结点:最后一个数据元素没有后继。
2.2 线性表分类
2.2.1 顺序表
顺序表是以数组的方式进行存储,查询时间复杂度:O(1);插入时间复杂度为O(n)。
特点:逻辑地址相邻,物理地址也相邻。
2.2.2 链表
链表分为单向链表和双向链表。特点是:逻辑地址相邻,物理上不一定相邻,由指针指向下一个数据元素。
- 单向链表
- 每个节点由一个数据域和一个指针域组成,数据域用来存储数据,指针域用来指向下一个节点。
- 头结点的数据域不存储数据。
- 尾结点的指针域是空的。
判断单链表是否为空:
p->next = null
插入节点
newcode->next = t->next
t->next = newcode
删除节点
t->next = t->next->next
- 双向链表
- 每一个节点由一个数据域和两个指针域组成,数据域用来存储数据,指针域分别用来指向前一个节点和后一个节点。
- 头结点不指向前一个节点,也不存储数据。
- 尾结点不指向后一个节点,但是它指向后一个节点,存储数据。
双向链表初始化
head->prev = head
head->next = head
双向链表插入元素
node->next = p->next
p->next->pre = node
node->pre = p
p->next = node
双向链表删除元素
p->next->next->pre = p
p->next = p->next->next
2.3 相关习题
三、栈和队列
3.1 栈
栈也是一种线性结构,特点:先进后出,后进先出。
栈的初始化
s.top = s.base
代表栈空。- top为栈顶指针,栈顶指针指向的地址值为空;top的初值指向栈底;
- 每当插入一个元素时
top+1
,弹出一个元素时top-1
。
判断是否为满栈
s.top-s.base == s.StackSize # StackSize代表分配的存储空间
入栈
if(S.top-S.base==S.StackSize) return ERROR; # 栈满
*(s.top) = e; 将元素e压入栈顶,同时栈顶指针+1
s.top++
出栈
if(S.top-S.base==S.StackSize) return ERROR; # 栈满
s.top--; # 栈顶指针-1,栈顶元素出栈
*(s.top) = e;
3.2 栈相关习题
3.3 队列
- 队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出的特性。
- 队头:进行删除操作的一端。
- 队尾:进行插入操作的一端。
队列的存储结构分为顺序存储和链式存储。
3.3.1 队列(顺序存储)
求顺序表的长度
Q.rear-Q.front
Q.rear
跟栈的s.top一样,尾指针始终指向队尾元素的下一个位置。
入队
Q.base = new QElemType[Maxsize];
if(Q.rear == Maxsize) return 0; # 判断队列是否满了
Q.base[Q.rear] = e; # 将新元素插入队尾,队尾指针+1
Q.rear++;
Q.base = new QElemType[Maxsize];
if(Q.rear == Maxsize) return 0; # 判断队列是否满了
e = Q.base[Q.front]; # 删除队头元素,front指针+1
Q.front++;
假溢出
顺序存储的队列会出现假溢出现象,如下右图所示,rear指针会告诉我们队列已满,实际并没满。引入循环队列
判断队满、队空
Q.front == Q.rear # 队空
(Q.rear+1)%Maxsize == Q.ront # 队满,取余,损失一个空间
3.3.2 队列(链式存储)
在链队中,只允许单链表的表头进行删除操作(出队),表尾进程插入操作(入队)。分为普通节点和头结点。
链队初始化
q = (LinkQueue *)malloc(sizeof(LinkQueue));
q->front = null; # front指向空
q->rear = null; # rear指向空
判断队列是否为空
q->front=null && q->rear=null
链队入队
p = new Qnode;
p->data = e;
p->next = null; Q.rear->next=p; # 将新节点插入队尾
Q.rear = p; # 修改队尾指针
链队出队
p=Q.front->next;
e=Q.front->next->data;
Q.front->next = p->next; # 修改头结点的front指针
if(Q.rear ==p) Q.rear=Q.front; # 最后一个元素被删,队尾指针指向头结点
delete(p); # 删除节点
3.4 队列相关习题
四、串、数组和广义表
4.1 串
串是一种特殊的线性表,其是由零个或多个字符组成的有限序列,字符可以是字母、数字或其他字符;串中字符的个数n称为串的长度,n=0的串称为空串。串中任意个连续字符组成的子序列称为该串的子串。
线性表的基本操作主要是以单个元素作为操作对象,串的基本操作主要以子串作为操作对象。
KMP算法
KMP算法的核心:一旦发生字符不匹配,保持主串指针不变,将模式串指针回溯到主串的最大后缀等于模式串的最大前缀。
- 前缀:除最后一个字符的所有子串;
- 后缀:除第一个字符的所有子串。
next数组保存的指针j的值,next[1]默认写0
4.2 串习题
nextval:相同元素情况下,找索引最小的next值。
4.3 数组
数组是线性表数据结构,它使用一组连续的内存空间,来存储一组具有相同类型的数据。二维数组内存结构:行优先存储和列优先存储。
特殊矩阵存储
1、对称矩阵
对称矩阵按照行优先进行存储,存储对称方阵最多存储n*(n+1)/2个元素。
2、上/下三角矩阵
上三角矩阵按行优先进行存储,最后一个位置存储常量C。
3、三对角矩阵
行优先存储,元素个数为:3n-2。
4、稀疏矩阵
稀疏矩阵:非零元素远远少于矩阵元素的个数。
- 顺序存储(三元组——行、列、值)
- 链式存储——十字链表法
4.4 数组习题
4.5 广义表
广义表又称列表,也是一种线性存储结构。
五、树
度:节点拥有的子树数目。