SVM支持向量机

一、SVM简介

1.支持向量机(SVM)定义:
三种:线性可分支持向量机、线性支持向量机、非线性支持向量机。
SVM的学习算法就是求解凸二次规划的最优化算法;
SVM是一种二类分类模型,基本模型是定义在特征空间中的间隔最大的线性分类器。
学习策略是间隔最大化
训练集线性可分时,通过硬间隔最大化,学习一个线性可分支持向量机
训练集近似线性可分时,通过软间隔最大化,学习一个线性支持向量机
训练集线性不可分时,通过核技巧与软间隔最大化,学习一个非线性支持向量机
线性可分支持向量机:
给定线性可分训练集,通过间隔最大化或等价地求解相应的凸二次规划问题学习得到的分离超平面为:
在这里插入图片描述
以及相应的分类决策函数:
在这里插入图片描述
称为线性可分支持向量机

2.概念
(1)函数间隔:可以表示分类预测的正确性及确信度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值