一、SVM简介
1.支持向量机(SVM)定义:
三种:线性可分支持向量机、线性支持向量机、非线性支持向量机。
SVM的学习算法就是求解凸二次规划的最优化算法;
SVM是一种二类分类模型,基本模型是定义在特征空间中的间隔最大的线性分类器。
学习策略是间隔最大化。
训练集线性可分时,通过硬间隔最大化,学习一个线性可分支持向量机;
训练集近似线性可分时,通过软间隔最大化,学习一个线性支持向量机;
训练集线性不可分时,通过核技巧与软间隔最大化,学习一个非线性支持向量机。
线性可分支持向量机:
给定线性可分训练集,通过间隔最大化或等价地求解相应的凸二次规划问题学习得到的分离超平面为:
以及相应的分类决策函数:
称为线性可分支持向量机。
2.概念
(1)函数间隔:可以表示分类预测的正确性及确信度。