因子分析vs主成分分析

前两篇文章介绍了因子分析主成分分析的原理与基本步骤。初次学习时,大家可能感觉这是两个基本相同的方法,但实际上两者间还是有一定差异的。这篇文章就带大家盘点一下两个方法间的异同。

目的

  • 因子分析:旨在识别观测变量背后的潜在因素或结构,这些因素是不可观测的。它通常用于探索性数据分析,以发现变量之间的潜在关系。

  • 主成分分析:主要用于数据降维,将原始变量转换为较少数量的主成分,这些主成分是原始变量的线性组合。它不涉及潜在变量的概念。

方法

  • 因子分析

    • 考虑变量之间的相关性,通过最小化残差来提取因子。
    • 通常使用最大似然法、最小二乘法或因子载荷估计等方法。
    • 因子载荷是观测变量与潜在因子之间的相关系数。
  • 主成分分析

    • 考虑变量的方差,寻找能够解释最大方差的线性组合。
    • 使用特征值分解或奇异值分解等方法。
    • 主成分是原始变量的加权线性组合,权重由特征向量给出。

应用

  • 因子分析

    • 常用于社会科学、心理学和市场研究等领域,用于探索变量之间的潜在结构和关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

零 度°

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值