前两篇文章介绍了因子分析与主成分分析的原理与基本步骤。初次学习时,大家可能感觉这是两个基本相同的方法,但实际上两者间还是有一定差异的。这篇文章就带大家盘点一下两个方法间的异同。
目的
-
因子分析:旨在识别观测变量背后的潜在因素或结构,这些因素是不可观测的。它通常用于探索性数据分析,以发现变量之间的潜在关系。
-
主成分分析:主要用于数据降维,将原始变量转换为较少数量的主成分,这些主成分是原始变量的线性组合。它不涉及潜在变量的概念。
方法
-
因子分析:
- 考虑变量之间的相关性,通过最小化残差来提取因子。
- 通常使用最大似然法、最小二乘法或因子载荷估计等方法。
- 因子载荷是观测变量与潜在因子之间的相关系数。
-
主成分分析:
- 考虑变量的方差,寻找能够解释最大方差的线性组合。
- 使用特征值分解或奇异值分解等方法。
- 主成分是原始变量的加权线性组合,权重由特征向量给出。
应用
-
因子分析:
- 常用于社会科学、心理学和市场研究等领域,用于探索变量之间的潜在结构和关系。